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ABSTRACT

We present the global polarization of Λ and Λ hyperons in Au+Au collisions at
√

sNN = 7.682, 11.454,

14.546, 19.564, 26.994, and 38.996GeV [1]. The global polarization is a measure of the alignment of final

state particle spin with total collision system angular momentum, and is given as a percentage. Averaging

over
√

sNN the values of the polarization for these particles is PΛ = 1.08± 0.15(stat)± 0.11(sys)% and

P
Λ
= 1.38±0.30(stat)±0.13(sys)%. This represents the first non-trivial measurement of this type. The data

was recorded by the STAR collaboration. Positive polarization represents positive vorticity in the fireball.

We also present a method for extracting this vorticity from the data while accounting for polarized particle

feed down [2]. The extracted vorticity is ω = (9± 1)× 1021s−1 with a systematic scaling uncertainty of

2, primarily due to uncertainty in the temperature. Such a vorticity far exceeds any other known vorticity

lending a new superlative to the QGP: “the most vortical fluid”.
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Chapter 1
INTRODUCTION TO HEAVY-ION PHYSICS

Heavy-ion collision physics is the study of the strong nuclear force, described by quantum chromodynam-

ics (QCD), through the collisions of heavy atomic nuclei (typically systems of Gold-on-Gold or Lead-

on-Lead). The unique feature of quantum chromodynamics (QCD) is that the force carrier, the gluon (a

massless boson), carries color charge and thus has a self interaction. At high-energy transfer QCD calcu-

lations are perturbative (a property known as asymptotic freedom), however at low-energy transfer QCD is

non-perturbative, making traditional calculation techniques impossible. Low-energy QCD calculations are

performed on finite computer lattices, a technique known as lattice QCD.

At finite baryon/anti-baryon asymmetry (net baryon density) lattice QCD calculations encounter the

“numerical sign problem” and break down. It is typical to represent this baryon asymmetry by a chemical

potential, the baryon chemical potential (or baryochemical potential) µB, which has the units of energy. At

zero asymmetry (e.g. early universe) is µB = 0, while for normal baryonic matter (e.g. nuclear matter)

µB ∼ 1GeV (the scale of nucleon mass). It is possible to extrapolate lattice QCD calculations made at

zero baryochemical potential to finite, but low, chemical potential. Such extrapolations quickly become

extremely computationally expensive and, thus, untenable. These lattice limitations fall below the densities

of normal nuclear matter, and far below that of more exotic systems (e.g. neutron stars, which are more

baryon dense due to intense gravity). The baryochemical potential of heavy-ion collisions can be tuned, by

adjusting the collision energy, to fall inside or outside of this range.

Unless otherwise stated quantities are quoted in so called “natural units” where the fundamental con-

stants ~= kB = c = 1 (that is, in order, the Reduced Planck’s constant, the Boltzmann constant and the speed

of light).
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1.1 Historical overview

The origins of heavy-ion physics predate QCD. In the early days on particle physics there was a veritable

gold rush in the identification of new hadronic states. In the mid-1960s Rolf Hagedorn noted that the number

of hadronic states of a given mass range increased exponentially with mass. Additionally it was noted at

the time that the average transverse momentum of the great majority of the produced particles in a collision

did not seem to scale with the energy of the collision (very high-energy collisions were reachable with

high-energy cosmic rays). This low momentum spectrum led Hagedorn to suspect that the emission was

from a common thermal source and, by fitting this mass spectrum by an exponential function of particle

mass over temperature, this temperature was extractable. The extracted temperature, called the “Hagedorn

Temperature”, was measured to be ∼160MeV). Thermal studies struggled at describing the spectrum of

the lightest hadron, the pion (mπ ∼140MeV). Hagedorn solved this problem with the Statistical Bootstrap

Model (SBM), which imagined heavier hadronic states as composites of lighter ones (at this point the lighter

particles are understood to be point like), explaining the yields [3, 4, 5].

Figure 1.1: Non-strange meson mass spectrum [6]. The lowest red stepped curve is an older collection of
mesons, which the higher curves include some newer mesons and mesons expected from theory. Straight
lines represent exponential fits of the functional form dN

dM ∼Mαexp
(

M
TH

)
, clearly demonstrating the obser-

vations which motivated Hagedorn’s suppositions.

Hagedorn imagined that energy added to the system went into making an ever more compressed gas
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Figure 1.2: Lattice calculations of energy density divided by
T 4 [7] which scales as the number of degrees of freedom. The
red squares with a 4 temporal bins seem to indicate a flat (and
thus no) dependence of ε/T 4 as a function of temperature. The
black filled circles show a later calculation with 6 temporal
bins. This demonstrates a clear rising of ε/T 4 with tempera-
ture.

Figure 1.3:

QCD phase diagram [8]. The loca-
tions of the great majority of the features
of this figure in the T -µB space are
largely speculative.

of heavier and heavier hadronic states which radiated particles as a ‘fireball’. Today we understand these

hadronic states in terms of their quark component, but the implication of a maximum temperature for a

hadronic gas remains an important and compelling point (in fact the SBM was later modified to consider

quarks, but I will not go into this model). From QCD we know that at very high energies quarks are

asymptotically free so at some sufficiently high temperature (e.g. in the early universe) the constituent

partons should escape their hadronic bounds. This new phase of deconfined and color-charged quarks and

gluons is known as the Quark Gluon Plasma (QGP) – the phase of matter the universe was in for the first

few microseconds after the Big Bang. The Hagedorn temperature can then be understood as the constant

temperature over which energy is transferred into the medium as a latent heat, or, from the other direction, as

freezeout temperature of the fluid when the QGP evaporates into hadronic matter. To learn something more

exact we can look at lattice QCD data. Fig. 1.2 depicts the energy density divided by the temperature to the

fourth power as a function of temperature from lattice calculations, which is proportional to the number of

degrees of freedom in the system.
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As described by the SBM as the temperature increases the number of degrees of freedom rapidly grows

near the freezeout temperature as more and more hadronic states are created. Suddenly the number of

degrees of freedom starts to level off as the system becomes a deconfined state of quarks and gluons. Earlier

data (red) with larger lattice spacing seemed to suggest a flattening of the curve at the onset of deconfinement

which would suggest a saturation in the number of degrees of freedom. As seen in photon ideal gas used to

describe black body radiation ε/T 4 being constant is a tell-tale signal of a non-interacting gas. Consequently

at the turn on of RHIC in 2000 it was expected that this deconfined state would be best described as a weakly

interacting gas. Instead what was found was a strongly coupled plasma of color charges. Retrospectively

the non-flatness at high temperature of the lattice data can be seen clearly in the more precise black points

with the smaller lattice spacing.

If there is a phase transition it is important to try to characterize the baryonic phase diagram as best we

can. Lattice calculations conclude that the transition from baryonic to partonic matter at low baryochemical

potential is a smooth crossover [7]. At large baryochemical potential and low temperature several model

calculations have led to a (less robust) consensus that there is a first order phase transition [9, 10]. By Gibbs’

phase rule these two conditions imply that there must be a critical point. Lattice calculations extrapolated

to finite baryochemical potential have been unable to find any signatures of criticality (e.g. divergence of

correlation lengths within the medium). The accepted understanding is that the critical point lies in a region

of baryochemical potential beyond the acceptable range of extrapolation for lattice calculations. Thus the

existence and location of the first-order phase transition as well as the critical point are almost completely

unknown. With the information at hand we can sketch any number of qualitatively similar phase diagrams

pictures. One such picture is fig. 1.3. Points of orientation are the limits of baryochemical potential and the

measured freezeout temperature.

1.2 Modern heavy-ion collision physics

After the millennium the thrust of the field, experimentally, has largely been in the large accelerator projects

the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) (though older-style fixed

target experiments NA61/SHINE at the SPS and HADES at SIS-18 are still in operation). RHIC is a purpose-

built heavy-ion collider which had it’s first physics collisions in 2000. At the start of it’s operation RHIC
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had four separate experiments, all of which were dedicated to heavy-ion measurements (though RHIC has

an additional ability to provide polarization proton beams for spin physics). Of the four initial detectors only

STAR (to be described in detail later) remains in operation, though data analysis is still underway on others.

The LHC is a machine built primarily with high-energy physics in mind, though it is capable of providing

heavy-ion beams. The LHC turned on in 2009 with four detectors, one of which (ALICE - A Large Ion

Collider Experiment) was built for heavy-ion physics and shares very similar basic design and detection

goals with STAR. Two detectors designed for high-energy physics, ATLAS and CMS, have additionally

contributed significantly to heavy-ion physics.

In the parlance of heavy-ion collider physics collision energies are quoted in
√

sNN which is the center

of mass energy of a nucleon-nucleon pair system. Additionally the collision system is abbreviated by the

atomic abbreviation for an element (generically an element is abbreviated with an ‘A’), p is for proton, d for

deuteron, and t for tritium. Discounting datasets not interesting to heavy-ion physics the LHC has provided

collisions of pp, pPb, and PbPb at 2.76 and 5.02TeV. RHIC has provided collision systems of pp, pAu,

dAu, AuAu, AlAl, CuCu, CuAu, and UU. Most of these systems are collided at or near top RHIC energy

(200GeV), though CuCu and dAu collisions were also provided at 62.4 and 19.6GeV. In order to scan the

temperature-baryochemical phase space RHIC has provided a suite of AuAu data at 200, 62.4, 39, 27, 19.6,

14.5, 11.5, and 7.7 GeV. AuAu collision data below 62.4GeV is typically branded as the Beam Energy Scan

(BES) (though it would be reasonable to include any higher energy in this definition). The goal of the BES

program is to explore the QCD phase diagram. As
√

sNN is decreased the initial temperature is decreased,

but also, due to complicated collision dynamics, the baryochemical increases at the same time. STAR has

installed a Au fixed target to increase the
√

sNN coverage of the second BES, set to start taking data in 2018.

The relevant scales of a heavy-ion collision are the spatial size (O (fm)) and the temporal extent of the

fireball (O
(
fm/c = 10−23s

)
– the scale of the strong interaction). In most cases the speed of the particles

we talk about is so great that it is reasonable to take the approximation that they’re going at the speed of

light. The nuclei themselves are significantly Lorentz contracted (at top RHIC energy the gamma factor is

approximately 100) in the lab frame so nuclei look more like pancakes than spheres. At infinitely high
√

sNN

the nuclei pass through each other, leaving a energy behind with zero net baryon density. At lower
√

sNN

original participant nucleons don’t totally escape the fireball and deposit non-zero baryochemical potential

into it. These violent collisions break the nuclei apart and send the remnants far forward.
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Collisions themselves are messy due to the inherent lumpiness of a nucleus (as well as the nucleons

themselves) which, subsequently, make a lumpy material of non-homogeneous energy scales and thermal-

ization. The first∼ fm/c of a collision, before any kind of equilibrium is possible, is difficult to describe and

is generically called the “pre-equilibrium stage”. Afterwards the collision rapidly thermalizes and becomes

a QGP (depending on initial energy of the collision). The QGP then freezes out into a gas of hadrons. As

this hadron gas becomes sufficiently diffuse the inelastic particles collisions cease and chemical potential

ratios are locked in, this is called chemical freezeout. Afterwards all elastic particle interactions cease and

the particle momenta are locked in, this is called kinetic freezeout. Realistically the freezeout surfaces for

each particle species is different. Of course particles without strong interactions immediately escape the

QGP, but the hadrons themselves have different temperature freezeout surfaces generically depending on

their mass.

Figure 1.4: Cartoon of freezout for a heavy-ion collision [11].

Due to density fluctuations a real collision carves out a non-zero-width area of the phase diagram as it

makes it’s way from QGP to non-interacting hadrons. Though the average temperature of the QGP itself is

above the perturbative natural scale of QCD, the lumpiness of the collisions is such that the collision dynam-

ics cannot be well described perturbatively. Descriptions of the data are thus phenomenological and are often

hybrid models cobbled together to best describe the different stages of the collision. Broadly models may
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contain any number of theoretical descriptions or parameterizations of the initial stage, string fragmenta-

tion and transport models (UrQMD and AMPT), and hydrodynamic calculations. Initial densities generally

start from nucleon densities given by the Woods-Saxon distribution, which is determined experimentally. A

nucleon distribution found by sampling a Woods-Saxon is called a Glauber distribution.

1.3 Variables of general interest in heavy-ion collisions physics

There are a number of variables of interest to heavy-ion physics which require some explanation. The first

thing to note is that in a collider experiment particle production is greatest along the direction transverse to

beam axis (ẑ). The sign of the z coordinate as well as the choice of the traverse coordinates (x̂ and ŷ) are, in

a detector at least, chosen arbitrarily. There is some convention that, in the collision coordinate system, the

impact parameter (~b) points in x̂ direction. It is thus the case that the transverse momentum, pT =
√

p2
x + p2

y

is a very common variable in the field. The azimuthal angle is always given in this convention.

Another common variable is the rapidity:

y =
1
2

log
(

E + pzc
E− pzc

)
(1.1)

The rapidity is a measure of how far away from the plane of the collision the momentum of the particle

points. y = 0 at pz = 0 (called midrapidity) and y =±∞ for pT = 0 and pz > 0 or pz < 0 (called forward or

backward rapidity). The primary advantage of y is that a boost of velocity β along the ẑ direction is simply

additive in tanh−1
β. Thus the difference in rapidities between two different particles is a Lorentz invariant.

The trouble with rapidity is that it requires knowledge of the energy of the particle (typically the sticking

point is the particle’s identity). Pseudorapidity is a purely geometric approximation of the rapidity and a

perfect match if γ = ∞. It is defined as η = − log(θ/2). Aside from describing unidentified particles η is

useful for characterizing the coverage of detectors (assuming zero mass particles created in the center of the

detector).

Since the nuclei themselves aren’t point particles a collision can exhibit a large range of impact parame-

ters. Knowing the degree of overlap is tremendously important for the understanding of many observables.

The variable defined for this task is the centrality. Details on the definition of centrality depend on the

data under consideration, but the common element is that it is characterized in terms of a percentage of
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events with 0% being “very central” and 100% being “very peripheral”. Ultimately, of course, this should

be chosen to correspond best to impact parameter.

1.4 Overview of heavy-ion physics theory and event generators

The most basic event generators used in some data comparisons are mostly parameterizations of the data.

Such generators are not typically used to reconstruct data, but, knowing what goes into the generator allows

them to be used as a null hypothesis when compared to data. Another usage is the calculation of detector

efficiencies. One such example of an event generator is HIJING. PYTHIA is a parameterization of well

understood pp data. HIJING simply constructs AuAu data by sampling nucleon distributions and judiciously

placing PYTHIA events at the points of nucleon-nucleon interactions.

Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and A Multi-Phase Transport model AMPT

are both models which seek to describe heavy-ion data by calculating all of the dynamics of each particle

interaction. Typically both hadronic and partonic transport are components of a calculation. AMPT assumes

a change of phase from partonic to hadronic physics. The dynamics of string-based transport calculations is

complicated and beyond the scope of this thesis.

Since the system is a thermalized (or mostly thermalized) plasma it can be described by relativistic

hydrodynamics for some period of it’s evolution. Instead of calculating single particle transport, the inter-

actions are essentially averaged and described with fluid dynamics. Typically full hydrodynamic models

are quite complicated sets of different conditions. The first thing one needs are initial conditions for the

pre-equilibrium stage. Afterwards the hydrodynamic code is run. Depending on the model in question it

may be 2+1 or 3+1 dimensional (that last dimension is time) and may or may not include bulk and shear

viscosity. Finally the hydrodynamic simulation reaches some critical temperature where particles are frozen

out. At this point it is typical to use an “afterburner” to describe the hadronic interactions until kinetic

freezeout occurs. The equation of state from a lattice calculation is an input during the hydrodynamic phase

and the shear viscosity is typically found by comparing to flow measurements (more on this later). The

initial conditions are still quite poorly understood and different initial conditions will give different values

of the viscosity, giving a sense of the theoretical error. In principal if one has every stage of the model

under control it would be possible to back-calculate the equation of state (EOS) and compare it to the lattice
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Figure 1.5: STAR particle spectra at
√

sNN =
39GeV [12]. These figures all depict particle multi-
plicity as a function of transverse momentum. Dif-
ferent cells are for different identified particles and
the different trends are for different event centrali-
ties.

Figure 1.6:
STAR particle spectra fits for 7.7 and 39GeV
collisions [12]. The fit function used is a Grand
Canonical Ensemble (abbreviated GCE). As can be
seen the fit works quite well on the data.

calculations. This is not simply circular as the lattice can only be trusted to small baryochemical potential.

The success of hydrodynamic lends considerably confidence to the thermalization hypothesis of heavy-ion

collisions.

More simplistic thermal fits of the momentum spectra for hadrons (which, as it happens, is the same

exponential slope as found by Hagedorn) fit the data quite nicely once one takes into account the boost the

spectrum gets as particles are emitted from an expanding source. The model typically used to correct for this

boost (radial flow) is called Blast-Wave. Thermal fits of STAR data are shown in figure 1.6. As one can see

the fits describe the data remarkably well. Since this is a measurement of the freezeout surface temperature

one will measure the same temperature regardless of how much the maximum temperature of the fireball

exceeded the freezeout temperature. In this way the measurement is totally analogous to the temperature

measured from the CMB (once it is corrected for red-shift) which is the temperature of the electromagnetic

freezeout of the universe.

Perhaps the most basic correlation measurement which is used to test models is flow. Initial position

space anisotropies in energy density exist due to basic collision geometry (the nuclei used are typically

spheres contracted into disks so the overlap of two nuclei is more typically almond shaped than circular) and

fluctuations (nucleon density follows random sampling of a the nuclear density distribution). These position

space anisotropies are transferred to momentum space anisotropies via pressure gradients in hydrodynamic
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evolution/transport interactions. The momentum space anisotropies can be decomposed into harmonics

representing shapes and measured experimentally.

E
d3N
d3 p

=
1

2π

d2N
pT d pT dy

(
1+

∞

∑
n=1

2vn cos(n(φ−Ψn))

)
(1.2)

The cumulants of this distribution vn are the flow coefficients and can be found by averaging over par-

ticles of interest. They’re expressed in terms of their event planes Ψn which describe the orientation of the

momentum anisotropy. The event planes are found from the “Q-vector”s for particles i and some weight wi

(the weight can be chosen arbitrarily)

~Qn =

(
∑

i
cos(nφi),∑

i
sin(nφi)

)
(1.3)

From the Q-vector using the C++ function atan2:

Ψn = atan2(Qn,x,Qn,y)/n. (1.4)

Knowing Ψn one can get a flow coefficient by averaging over all particles of interest in all collisions

vn = 〈cos(n(φi−Ψn))〉 (1.5)

The second order harmonic decomposition, v2, represents an elliptic deformation, the third, v3, repre-

sents a triangular deformation, etc. Even orders (especially v2) are expected from the rough geometry of

the overlap region, while odd orders can only come from density fluctuations (which is not to say that such

fluctuations are less relevant for the even harmonics). Flow data is fit quite well by hydrodynamic models.

The viscosity in the model is chosen by the value which best fits the data. This may seem to diminish the

quality of the model as a describer of flow, but it must be remembered that the same fluid gives rise to all

orders of flow and that different viscosities could not guarantee the shape of the flow.

It would be difficult to overstate the progress in modeling over the last decade or so. Not long ago cal-

culations in heavy-ion physics were able to match data qualitatively at best. Calculations now take care to

include fluctuations, which was ignored for a long time, and are really reaching quantitative descriptions of

the data. The popular view of heavy-ion collision physics modeling has reached a sort of consensus under
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Figure 1.7: Several order of the flow parameter as calculated by the MUSIC hydrodynamic model [13].
The shear viscosity is tuned so that the model can match the v2, but it is important to note that the code
reproduces the higher order flow very well and that the shape of the flow is not so easily matched by varying
one parameter.

the banner of viscous hydrodynamics (for T & 165MeV). This is commonly referred to as the “standard

model of heavy-ion physics” [14]. With this model convergence it is becoming possible to rely on well un-

derstood features of the models (e.g. afterburners by way of transport in the hadronic stage) to quantitatively

understand fairly robust parameters (e.g. shear viscosity) and qualitatively compare difficult-to-understand

parameters (e.g. initial conditions from the pre-equilibrium stage of the collision).

To this end Markov chain Monte Carlo (MCMC) calculations have been performed to work backwards

from parametrically driven descriptions of the data to the EOS. The input data for the MCMC calculation

I’ll describe are from the LHC at
√

sNN = 2.76TeV and top RHIC energy of
√

sNN = 200GeV. 30 input

parameters where chosen (15 for each beam energy) from particle spectra (yields and average particle pT ),

femtoscopic radii (a sort of quantum statistical interference measurement which will not be described in this

thesis), and flow. The parameters where taken from very central (0-5% centrality) and mid-central (20-30%)

collisions. The model used to describe the data was the MUSIC hydrodynamic code with 14 parameters. The

initial conditions for the calculation are a parameterization of saturation model assumptions. The MCMC
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calculation requires many iterative runs over the data and the hydrodynamic code is very computationally

expensive. To save time the this is not full event-by-event hydrodynamics, but rather involves averaged initial

conditions. Since much of the flow is driven by the “lumpy” initial state, which is partially washed out in the

averaging process, the calculation included a 10% fudge-factor increase of the flow values. The 14 model

parameters are event split between the two
√

sNN. Of them 10 are for describing the initial stages of the

collision (pre-equilibrium flow and energy density) before the hydrodynamic stage, two are for describing

the shear viscosity and its energy dependence, and two are for the EOS. After a principal component analysis

was performed on the 30 input parameters they were reduced to 14 principal components. After this the

MCMC process was run over 1000 events. It is plain to see that the randomly sampled model predictions

prior to the MCMC fit the data quite poorly while the posterior data fits quit well. In the interest of brevity

I’ll just show the results of the EOS in fig. 1.8.

Figure 1.8: EOS constrained by MCMC calculation [15]. The EOS is constrained by lattice calculations
(red) and the EOS for an ideal non-interacting gas (green). Panel (a) depicts 50 randomly sampled EOS
from the prior while panel (b) depicts the same sampling of the distribution except weighted by the posterior
likelihood to find such an EOS.
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1.5 Description of apparatus

RHIC is a 3.8km circumference ring in which clockwise circulating ions (called the “blue beam”) can

be collided with counterclockwise circulating ions (“yellow beam”) at 6 fixed interaction regions. RHIC

was built on top of existing BNL high-energy and heavy-ion experiments which act as injectors for the

accelerator. Ions are injected into RHIC by the Alternating Gradient Synchrotron (AGS) at 19.6 GeV.

They’re injected in bunches (at∼ 109 ions per bunch) in resonant cavities of radio-frequency electromagnetic

fields. The bunches are accelerated by electric fields and guided around the ring by a large array of powerful

dipolar magnets.

At the turn-on of RHIC (2000) there were four detectors at various interaction points, but today STAR is

the only operating detector. RHIC has demonstrated the rare ability to provide a very diverse set of collision

systems in a very wide range of
√

sNN. In collider mode this range for heavy-ion physics is 7.7-200GeV,

while the upper limit on pp collisions is 500GeV. There is a fixed-target program at STAR to reach lower

energies, but I will not go into detail about that here. Uniquely RHIC is capable polarizing proton beams to

study polarized pp collisions, which has allowed a RHIC spin program to flourish at a facility purpose-built

for heavy-ion physics.

Figure 1.9: Aerial view of RHIC with important components labeled. For reasons unknown to me PHOBOS
is in parentheses. AnDy was a proposed spin detector. That interaction point was actually occupied by
BRAHMS. Also not pictured are the Roman Pot detectors which were moved to STAR a few years ago.
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The work reported in this thesis was done with the STAR detector at the 6 O’clock position on RHIC.

There are approximately 600 physicists in the STAR collaboration working to record data, analyze data,

and maintaining the complicated detector system. Generically STAR is a cylindrically symmetric “barrel”

detector. Most of the instrumentation is at mid-rapidity. A three-dimensional model of the detector, a

schematic drawing, and an event display can all be seen below. All such drawings neglect the Zero Degree

Calorimeter (ZDC), which lies 18m from the interaction point and is, thus, too far to draw on a reasonable

scale. Naturally, as a living detector, STAR has changed considerably over it’s relatively long lifetime.

Upgrades for the detector are currently underway.

Figure 1.10: 3D picture of STAR showing all major subsystems aside from the ZDC. The VPD and the BBC
are symmetric in rapidity, so the other half of these subsystems is not clearly visible at this angle.

Due to the size and complexity of the STAR detector it would not make sense to describe the detector in

it’s entirety. As quite detailed descriptions of the subsystems are available on the STAR webpage, I’ll only

provide schematic descriptions of detectors subsystems which I have made explicit use of in this analysis.

STAR is limited to recording events (that is, collisions) at a 1kHz rate by the data acquisition (DAQ),

which is often below the event rate of the collider. As the recording of events is thus at a premium STAR
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Figure 1.11: Schematic of the STAR coordinate system.

Figure 1.12: Event display of STAR demonstrating the tracking capabilities of the detector. Blue and green
tracks are oppositely charged. Gaps are TPC sector boundaries.
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Figure 1.13: Schematic of the TPC.

Figure 1.14: Full walkthrough of how the TPC pad
planes are used to detect, and thus track, charged
particles passing through the gas volume. Figure
courtesy of Mike Lisa.

must make very quick decisions about which events are likely to be worth recording and which are not

(e.g. collisions of the beam onto the beampipe, rather than the oppositely circulating bunch). Making such

decisions in real time is called “triggering”. Triggering is quite complicated and requires the use of many

of the STAR subsystems. It is, in principal, possible to set up triggers which look for very rare events (e.g.

events containing rare particles), or some type of event (e.g. events with 0-10% centrality). The majority

of the data recorded by STAR is “minimum bias”, which is to say that an event is recorded as long as it is

deemed to be good. Since very peripheral heavy-ion collisions are, due to low particle statistics, difficult

to distinguish from beam-pipe events or remnants from an older collision, STAR traditionally only uses 0-

80% centrality collisions for physics analysis. The subsystems used in this analysis are the Time Projection

Chamber (TPC), the Time Of Flight (TOF), and the Beam Beam Counter (BBC).

1.5.1 Subsystem: STAR TPC

The TPC is a mid-rapidity cylindrically-symmetric detector which is responsible for charged-particle track-

ing and particle identification (PID). Inside the TPC there is a uniform electric field of 135V/cm pointing

away from the endcaps, a central membrane separating the east and west sides of the detector, and a uniform

0.5T magnetic field pointing in the beam direction (the polarity can be reversed and the strength can be

changed). The TPC is filled with P10 gas (90% Ar and 10% CH4).

16



Charged particles passing through the TPC ionize the gas. Ionized electrons drift to the endcaps due to

the electric field. As the electrons approach the TPC anode wires (which carry high voltages) the electrons

create showers of charged particles. These showers make image charges on the other side of the TPC pad

row (pads are small squares of copper). The signal from the pads is then carried off to be amplified and

digitized by Analog to Digital Converters (ADCs) which is fed into the DAQ.

The path of the charged particles is bent into the shape of a helix by the magnetic field. The collection

of pad hits are fit to a helix to find the trajectory of the particle. At typical position space resolution of this

trajectory is∼ 500µm. Momentum longitudinal to the magnetic field is simply found from the declination of

the helix while the transverse momentum is found by the curvature. Typical momentum resolution is ∼ 2%.

The collection of tracks from an event are fit back to a single origin, which is where we get the location (or

primary vertex) of the collision.

The TPC also provides PID through energy loss in the gas. The Bethe-Bloch formula relates energy

loss of a particle per unit distance traveled in a medium to (among other things) particle velocity. At low

momentum there is a significant difference between the characteristic energy loss for different species of

particles. This method is useful for particle momentum up to about 0.8GeV. The STAR TPC provides a

resolution of ∼ 7.5% on the energy loss as a function of distance.

1.5.2 Subsystem: STAR TOF

The TOF is a barrel shaped detector with basically the same coverage as the TPC (|η| < 0.9). The TOF

measures the speed of a particle by first measuring the difference between the start time given by the Vertex

Position Detector (VPD) and the end time outside of the TPC. One must match the TOF hit with a track in

the TPC and know the momentum of the particle that passed through the detector. The TOF must be very

fast, which makes it an integral part of the trigger. The time resolution for the speed measurement is on the

order of 100ns. Once the particle speed and momentum is known one can trivially calculate the mass, which

provides additional PID for this measurement.

The barrel TOF uses an array of Multi-gap Resistive Plate Chambers (MRPCs), each of which is es-

sentially a collection of many thin (0.54mm) layers of resistive glass (resistivity on the order of 1013Ω/cm)

with very small separations (0.22mm). On the outside of these the STAR TOF has electrodes with high volt-

age (order of kV) making a uniform electric field. Outside of the electrodes are copper pads which gather
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the signal. The goal here is to make many showers in the small gaps between the glass plates whenever a

charged particle passes through. In effect the voltages for each plate are added up to make the signal.

Figure 1.15: In the TOF MRPC mini-showers are generated in the spaces between the glass plates due to
the electric field from the electrodes. Signal is carried off by the pads (in red).

The MRPC has a few advantages over a traditional RPC. With a larger gap there is more uncertainty on

where the initial ionization occurs. This can be further complicated by shower electrons being recaptured

and photons in primary ionization making more avalanches. Smaller gaps are built with larger relative

uncertainties, but, as it happens, the size uncertainties are counterbalanced. If a gap is unusually small it

will have a larger electric field gradient. So, even though the avalanche is given less space to develop, it

will develop faster. The primary disadvantage is that close plates are prone to make a noisy detector due to

thermionic emission from very small “mountains” of non-uniformity in the glass. In the electric field these

electrons can create avalanches which look just like the signal induced by a real particle.

The actual mechanics of signals in the many chambers “adding” as previously described is quite compli-

cated and not well understood, but has been copiously tested. The charge induced on the copper pads from

the showers is compared to the signal induced by the slower “holes” of ions traveling the opposite direction.
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1.5.3 Subsystem: STAR BBC

The BBC is a pair of two scintillator disks 3.75m from the interaction point. Each are made up of hexagonal

lattices. There is a small lattice made up of 18 tiles. On could inscribe a circle of radius 9.64cm in each

hexagon. The outer tiles are 4x this size, but, owing to some calibration issues, they’ve never been used for

physics analysis. Considering just the small tiles this makes the coverage of the detector 3.4 < |η| < 5.0.

Over the beam energy scan this pseudorapidity coverage includes both produced and transported particles.

The tiles are 1cm thick and are coupled to photomultiplier tubes (PMT) via wavelength shifting fiber. The

fiber is air coupled to the scintillator via grooves in the front and back of the scintillator. The embedded end

of the fibers are aluminized to reflect light. Each groove holds two fibers, so there are typically four fibers

per PMT. Each side has 16 channels so there are two PMTs on each side with eight fibers, as those tiles are

read out together.

Figure 1.16: To-scale diagram of the BBC. Only the smaller honeycomb is actually used.

The first order particle flow (v1) has a very distinctive shape at forward rapidities. Since it is explicitly

odd with rapidity v1 = 0 at y = 0. The maximum of the flow is beam-energy dependent, but the location of

the maximum is always forward. Since the signal is so small in the TPC finite statistics limits the resolution

of the orientation of the collision. The coverage of the BBC was quite good at these beam energies for
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measuring the orientation of this collision.
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Chapter 2
THEORY OVERVIEW OF GLOBAL

POLARIZATION

The basic underpinning of global polarization in heavy-ion collisions is quite simple. As previously men-

tioned the nuclei themselves are roughly spherical. Off-center collisions (as must generally happen) have

an angular momentum O
(
103~

)
(this is a

√
sNN dependent statement, the radius of a gold nucleus is about

5fm). Most of the angular momentum will be carried down the beam pipe and large rapidities by the spec-

tators of the collision, but it is likely that some fraction of that angular momentum sticks with the fireball

at midrapidity. It is important to point out that this is due to the non-trivial nuclear thickness function. If

the “pancake” was uniformly dense no such angular momentum would be left at midrapidity, but even a

hard sphere will be more dense at the center, leading to non-zero average angular momentum in the overlap

region.

As
√

sNN is increased the total angular momentum would also increase, however the fraction of that

angular momentum transferred to the fireball would decrease. This is do to a complicated and generally

poorly understood phenomenon called stopping. At arbitrarily high
√

sNN nuclei pass through each other

leaving energy density at the collision point. The fireball from such a collision would have zero net baryon

number and zero electric charge. The energy from the collision would still break apart the nucleus. In

theory parlance such a collision is boost invariant, and is the justification behind 2+1 dimensional hydrody-

namics. At lower collision energies some amount of the charge and baryon number from the original nuclei

doesn’t quite pass through the fireball and becomes part of it. Additionally collisions at higher
√

sNN have

higher temperatures and are longer lived. As the system expands the angular momentum is constant, but

the vorticity (which gives rise to polarization and is not conserved) decreases. Thus the scaling of fireball
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Figure 2.1: Angular momentum in the overlap region of a Au+Au collision [16]. Angular momentum is
given in units of ~ and the x axis is the impact parameter scaled by the “nuclear radius” (RA ≡ 1.2fm×A1/3).
Note that this is the sum of the angular momentum in the overlap region, but not necessarily the total angular
momentum transferred to the fireball, which can only be some fraction of this.

angular momentum is nontrivial and requires a quantitative, rather than a qualitative, description of collision

dynamics to predict
√

sNN dependence.

The net angular momentum of the fireball can be transferred to the particles which make it up via spin-

orbit coupling. Such an interaction qualitatively has no requirement on the phase of the matter and can be

expected regardless of whether hadronic or partonic degrees of freedom dominate. Naturally if one starts

from a situation of nonzero net partonic spin, by angular momentum conservation, one expects at least some

nonzero spin to end up in the final hadronic states. Measuring particle spin is difficult, generally, but some

particles decay via a weak decay which violates parity conservation. In such interactions it is possible to

determine the spin, statistically, from the decay topology. (Anti)Lambda baryons have such a decay and are

relatively abundant, as can be seen in fig. 1.6. This idea first came about in 2004 [17, 18]. Shortly afterwards

it was noted that the same effect could be measurable with vector mesons (e.g. the φ meson) [19].

There is an interesting non-relativistic parallel in the Barnett Effect [20, 21]. In the Barnett Effect

an uncharged object rotate with angular velocity ω will be measured to have spontaneous magnetization

M = χω/γ (where χ is the magnetic susceptibility and γ is the gyromagnetic ratio of the electron). The

experimental observation that the magnetization is proportional to the angular velocity predates a modern

understanding of intrinsic particle spin. The Barnett Effect is an example of spin alignment due to bulk

rotation.
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The analysis presented in this thesis is a measurement of the alignment of Λ (Λ) spin with system angular

momentum. Such a quantity is called the “Global Polarization”, or PH. More detail about the measurement

will be provided in sec. 3, but, since several theory calculations compare to this data, it makes sense to show

the data independent of the theory here in fig. 2.2.
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Figure 2.2:
〈

8
πα

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
vs.
√

sNN for 20-50% centrality [1]. PH characterizes the global correla-

tion between Λ (Λ) net spin and system angular momentum.

There was a significant effort, especially early on, to calculate the polarization of the quarks which make

up a QGP due to an off-center collision [17, 22, 16]. These calculations are quite difficult so a number of

simplifications needed to be employed. The first paper [17] limits the calculation to perturbative regimes

where the transverse kinetic energy of the quark-quark interaction being considered is small. It is estimated

in this case that the quark polarization would be on the order of a few tens of percentage points. It is not

trivial to estimate hadron polarization given the quark polarization in all possible hadronization schemes,

so we’re really only afforded qualitative statements, which are nonetheless informative. If hadronization

is primarily achieved via quark recombination one can expect the hadron polarization to be similar to the

quark polarization. It is also expected that the polarization would increase approximately linearly with
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impact parameter and be the same for particles as for their anti-particles. Hadrons of very high transverse

momentum are not expected to be polarized as they come from hard collisions.

This calculation was expanded upon in a later publication [16] and generalized to not only consider

small-angle quark-quark scattering. Implicit in the small-angle approximation is the assumption that the

initial longitudinal shear of the QGP is large or that qq interactions occur only at high center of mass ener-

gies. This approximation is relaxed via finite temperature QCD. It is assumed that the medium thermalizes

instantly and that the onset of the QGP is immediate. The flow profiles of the pre-equilibrium stage of

the collision are important and far from trivial. This calculation method is limited to perturbative QCD.

In fact, despite the high temperatures achieved in a heavy-ion collision, many QCD interactions are still

non-perturbative. This calculation is valid only in the weak coupling limit, and it is acknowledged in the

paper that significant contributions may come from strong coupling. This is hinted at in the calculation

itself as the quark polarization is not vanishing as the coupling increases (though, of course, in this limit the

calculation is less reliable). At top RHIC energy the average quark polarization of semi-peripheral collisions

is calculated to be < 4%.

Figure 2.3: Quark Polarization as a function of qq collision center-of-mass energy scaled by medium tem-
perature in mid-central collisions [16]. The average center-of-mass energy depends on the model one uses
to describe the early longitudinal shear flow.

The quark polarization calculations give us a very interesting view into the microscopic interactions
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of the quarks, but it isn’t easy to translate the results into the average polarization of final state hadrons.

Another way of looking at these collisions is to treat the interactions statistically by considering the quarks

as constituents of a fluid, which is to say describe the collision hydrodynamically, as was done in [23, 24,

25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35]. Classically vorticity is~ω≡ 1
2
~∇×~v, for some fluid-cell velocity

~v, which simplifies to angular velocity in the rigid-body rotational limit. This was first touched on in [36].

The equations governing polarization in a hydrodynamic thermal framework where worked out in [23, 37].

Much of the discussion at this point is focused on the modification of v2 due to a rotating equilibrated

fireball to counterbalance viscous effects. If the spin degrees of freedom are in local thermal equilibrium at

hadronization then hadron polarization can be determined statistically at the freezeout hypersurface. This

is in exact analogy to how hadron momenta are determined in hydrodynamic models and simply represents

and extension to the (standard) Cooper-Frye formula (the extension to spin 1/2 particles can be seen in

Ref. [38]). The hadron polarization determined in this way is proportional to the spin of the particle and

the vorticity of the system. This is discussed in much greater detail in sec. 7. There are several possible

relativistic extensions of the classical vorticity. The thermal vorticity, ϖ, is

ϖµν =−
1

2T
(∂µuν−∂νuµ) (2.1)

In eq. 2.1 T is the temperature and u is the velocity of the fluid cell. The thermal vorticity is a unitless

quantity which clearly is just a factor of T off from reducing to classical vorticity. It’s a variable of interest

here because the polarization of hadrons is proportional to it. For spin 1/2 hadrons this proportionality is

Πµ (x, p) =−1
8

εµρστ (1−nF)ϖ
ρσ pτ

m
(2.2)

where Πµ is the 4-vector polarization, m is the mass, pτ is the 4-momentum, and nF is the Fermi-Dirac-

Jüttner distribution for baryons of baryochemical potential µB

nF =
1

eu(x)·p/T−µB/T
. (2.3)

A global polarization signal aligned with system angular momentum clearly requires a three dimen-

sional description of the collision, which is generally computationally expensive. Especially early on an

inviscid relativistic Particle In a Cell (PICR) model was used [24, 25, 26, 29]. As can be seen from that
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list of citations the PICR model is still used, even at very low (NICA/FAIR) energies where the viscosity is

very large. Other calculations have used ECHO-QGP (a hydro solution from astrophysics) with dissipative

hydrodynamics and isochronous freezeout surfaces [27]. Finally calculations have more recently been made

using the vHLLE hydrodynamic solution with 3+1D viscous hydrodynamics and UrQMD-based initial con-

ditions [30, 33]. Probably what is most comparable to this is CLVisc, a GPU based 3+1D hydro code which

uses AMPT initial conditions [28, 34]. The initial conditions, namely the flow and energy density distribu-

tion one feeds into the hydrodynamics, is very important. Typically this is a large source of uncertainty in

hydrodynamic models.

Naturally not all Λs are primary (in fact most are not). Λs coming from decays of heavier resonances

modify the measured polarization, which should be considered for quantitative comparisons. Correcting for

such parent contributions is typically called a “feed-down” correction. Some such comparisons correct for

this.

Figure 2.4: The thermal vorticity scaled by hydro cell energy density for a mid-central 200GeV collision at
time t = 4.75fm/c [24].

The other model under consideration is the AMPT model, as used in [39, 40, 41, 42]. Since it it

a microscopic model one can track individual particle interactions and their momentum/spin exchanges.

Ref. [39] provided reasonable expectations of vorticity. In order to describe vorticity in AMPT it is necessary
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Figure 2.5: Λ polarization as a function of azimuthal momentum [24]. The angular momentum points in
the −ŷ direction, so negative polarization projected on the ŷ axis means that the spin aligns with the system
angular momentum.

Figure 2.6: Λ polarization as a function of√
sNN [30]. The dotted red line corrects for Λ feed

down from Σ0 and Σ0 (1385) and the dashed line
corrects for feed down up to Σ0 (1670). In this
calculation the primary Λ polarization is identical
to the Λ polarization.

Figure 2.7: Λ polarization as a function of√
sNN [30] showing how much the polarization

varies from the nominal value due to set variations
of the model parameters. η/s is the shear viscos-
ity scaled by the entropy density for the fluid. R⊥
and Rη are initial-state parameters which control the
course-graining of the model. εSW is the particliza-
tion energy density. Clearly errors are dominated by
initial-state parameters at both

√
sNN values.
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Figure 2.8: Λ polarization as a function of
√

sNN
as compared to the data [33] in a vHLLE hydrody-
namic model.

Figure 2.9: Λ polarization as a function of
√

sNN as
compared to the data [31] in a PICR model. Errors
for the data have been removed.

to calculate it microscopically within some cell. In ref. [41] AMPT is used primarily for initial conditions.

The motivation for that study is the idea that hydrodynamic initial conditions may well describe equilibrium

mechanics, but a significant amount of initial quark polarization comes from non-equilibrium sources. That

calculation thus somewhat belongs to the quark polarization studies mentioned earlier. After the AMPT

initial conditions the model proceeds to find Λ polarization with a coalescence description by way of a

chiral kinetic calculation.
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Figure 2.10: Vorticity as a function of time from AMPT [39]. One can clearly see a decrease of the
maximum with an increase of

√
sNN. Since the higher

√
sNN collisions live longer one would even expect

this difference to be more stark at freezeout.

Figure 2.11: Λ polarization as a function of
√

sNN
from AMPT [40].

Figure 2.12: Λ polarization as a function of
√

sNN
from a quark coalescence model [41]. No feed-
down correction is made. This is expected to de-
crease calculated polarization by 15-20%.
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Chapter 3
DATA ANALYSIS

For some heavy-ion collision with orbital angular momentum direction L̂ the Λ hyperon polarization relative

to that angular momentum can be determined by the distribution of the Λs decay products. For the decay

Λ→ p+π− the angular distribution of protons in the parent Λ rest frame is given by

dN
d cosθ∗

=
1
2
(1+αH |PH |cosθ

∗) (3.1)

Where PH is the average polarization of the Λs, αH is the decay parameter of the Λ, and θ∗ is the angle

between the proton momentum in the mother Λ rest frame and L̂. The ‘H’ in the subscripts denotes hyperon.

For an anti-hyperon, e.g. the Λ, the script is delineated by an overline. From the particle data group αΛ =

-α
Λ

= 0.642±0.013 [43], which is discussed in more detail in sec. A.3. Statistically the daughter proton is

emitted in the parent Λ (Λ) frame in (opposite) the direction of the Λ (Λ) spin. The polarization may depend

on Λ emission angle and pseudorapidity. What is reported here is an acceptance integrated measurement.

There are a few simplifications that can be made to the description due to the STAR acceptance, which is

even in rapidity and azimuthal angle. the coordinate system is shown in fig. 3.2.

By integrating over solid angle it is possible to express the global polarization in terms of the variables

available to the experiment

PH =
3

αH
〈cosθ

∗〉 (3.2)

Where angled brackets denote an the average over events and Λs for all events. cosθ∗= sinθ∗ sin(ΨRP−φ∗).
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Figure 3.1: The impact parameter~b of the collision as well as the longitudinal ẑ coordinate.
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Figure 3.2: Azimuthal coordinates of a collision. The total system angular momentum Ĵtot is perpendicular to
the impact parameter,~b. In azimuthal coordinates the angle between the impact parameter and the detector
coordinate x axis is the reaction plane, ΨRP. The azimuthal projection of the proton’s momentum in its
parent Λ rest frame is ~p∗p,⊥. The angle that this momentum makes relative to detector coordinates is φ∗p.
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By integrating over θ∗ we get

PH =
8

παH
〈sin(ΨRP−φ

∗)〉 (3.3)

The reaction plane is estimated by the first-order event plane, Ψ1. This is determined via the BBCs.

The formula also assumes perfect detector acceptance, this will be discussed, along with a number of other

experimentally necessary corrections, later in this section. Finite statistics and particle position resolution

limit how well we can measure the first-order event plane. In terms of measured quantities the polarization

is

PH =
8

παH

〈sin(Ψ1−φ∗)〉
R1

(3.4)

where R1 is the first-order event plane resolution.

In this section I’ll include some final and corrected results, explain what corrections are made, and

talk about some efficiency and reconstruction issues that occur in the measurement. Aside from the final

result, and unless otherwise mentioned, most plots depict 〈sin(Ψ1−φ∗
Λ
)〉with a resolution correction, which

neglects the constant factor 8
πα

. The general idea of this section is to provide both the steps for doing this

analysis and to explain issues that are deemed fundamentally important to the QA of the analysis. In order

to do this measurement the following must be done

• Determine the event plane (sec. 3.1)

• Identify Λ (Λ) candidates (sec. 4.4.2)

• Apply resolution correction (sec. 3.2)

• Apply acceptance correction (sec. 3.3)

• Apply mass purity correction (sec. 3.4)

• Apply helicity efficiency correction (sec. 3.5.2)

See sec. 3.6 for a brief discussion of the statistical errors and sec. 5 for a discussion of the systematic

errors. Note that the decay parameter αH is taken to be 0.647±0.013 for both the Λ and Λ results. This is
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Figure 3.3:
〈

8
πα

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
vs.

√
sNN for

20-50% centrality [1]. PH characterizes the global
correlation between Λ (Λ) net spin and system
angular momentum. Also seen in fig. 2.2.
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Figure 3.4:
〈

8
πα

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
vs.
√

sNN for 0-
80% centrality. Sytematic error bars are not shown
because the bulk of the systematics come from the
off-mass signal at 20-50% collisions. Further stud-
ies are required for 0-80%. Comparable results
for [44] have not been calculated.

the decay parameter of the Λ. This may seem an odd choice as α
Λ

has been measured independently. It is

of fundamental interest whether these values differ but measured values have consistently found to be the

same within statistical errors and it is largely assumed that they are, in fact, identical. Using different values

would be confusing in as far as we are looking for differences in the data between Λ and Λ polarization.

It might seem to be endorsing the more unlikely scenario that they are different. At any rate it is evident

that the difference is small and the errors in the αH are nearly negligible compared to the relatively large

statistical uncertainty in the measure.

The final extracted polarization is in fig. 3.3. Averaging over
√

sNN the values of the polarization for

these particles is PΛ = 1.08±0.15(stat)±0.11(sys)% and P
Λ
= 1.38±0.30(stat)±0.13(sys)%.
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Figure 3.5:
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studies are required for 0-20%. Comparable results
for [44] have not been calculated.
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Figure 3.6:
〈

8
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sin
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Λ,Λ̄

)〉
vs.
√

sNN for 50-
80% centrality. Sytematic error bars are not shown
because the bulk of the systematics come from the
off-mass signal at 20-50% collisions. Further stud-
ies are required for 50-80%. Comparable results
for [44] have not been calculated. The 7GeV Λ

point is not shown as it is −19± 12%. Statistical
errors are symmetric, though 39GeV error bars are
cut off by the legend.
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3.1 Event plane determination

The analysis uses the first-order event plane, Ψ1, determined by the east and west BBCs. In fact three

separate planes are used in the analysis: one determined only in the east BBC, one in the west BBC, and

a third “full” event plane which is an ADC weighted average of the other two. The first two event planes

are calculated solely for the estimation of the resolution while the full event plane is used in the analysis to

estimate the impact parameter direction. All corrections for each of the three event planes are done totally

separately. Generally an event plane is found by weighting the tile geometry by the ADC (analog to digital

conversion) value for that given tile. The ADC is roughly proportional to the number of charged particles

passing through the tile. The numbering scheme for the inner tiles of the detector (only the inner tiles are

used) is shown in fig. 3.7 from the perspective of one looking at the detector from a very large |z| vantage

point.

Figure 3.7: BBC numbering scheme looking from very large |z|. Black numbers represent tile number while
blue numbers represent PMT number.

Tiles 7 and 9 (13 and 15) share PMTs which means it is impossible to tell whether one was hit or the
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other. Many analyses deal with this ambiguity by randomly assigning the ADC value in its entirety to tile 7

(13) XOR tile 9 (15). I prefer to count the tile pair’s contribution as being between them so π/2 (3π/2). I

think that this scheme makes more sense and certainly makes comparisons with ones own code or the code

of others much easier. In practice I have not seen a noticeable difference between the two methods. Note

that either way the tiles are mirrored about the x axis but not the y axis so that a line parallel to the z axis

might go through tile 11 on the West BBC and tile 17 on the East BBC while such a line could go through

both tile 8s.

v1∗y> 0 by conventions most reasonable to the STAR event plane. Therefore the west BBC reconstructs

the “correct” event plane. Spectators on the east side BBC hit a position which is 180◦s in x− y from those

that hit the west. This means that there is a negative sign for the east BBC event plane. More simply

ΨE = 0 =⇒ Qx,West = xSTAR which would mean ΨE = π =⇒ Qx,East =−xSTAR.

The “raw” (uncorrected) event plane is found by by weighting tile geometry by the ADC for the

relevant tile. This sum over the ADC channels creates a standard flow Q vector, Q1 = (∑16
i=1 ADCi ∗

cos(φi),∑
16
i=1 ADCi ∗ sin(φi)). We make (and correct) Q vectors for east and west separately which allows

us to get a resolution correction later. The Q vector for the full event plane is basically made by taking

Q1,W −Q1,E . After this raw event plane is found we do a series of corrections to the event plane The correc-

tions are done in the following order:

• Gain correction: The idea of the gain correction is that not all BBC tiles may output the same ADC

value for the same hit, some can be hot/cold. To correct for this we normalize the number of hits in

each tile by the amount that tile fired relative to the other tiles making sure that the bank of “other

tiles” is equally likely to be hit. So, innermost tiles 1-6 are normalized together while, separately tiles

7-18 are normalized together. This normalization should be done over enough time to get reasonable

statistics and a small enough time that the normalization is relevant. I do this normalization for each

new run number. This is made somewhat more complicated by the shared tiles, see sec. A.2 for details.

• Recentering correction: The Q vector averaged over all events has to be zero since, of course, there is

no preferred impact parameter. Even with the gain correction it is possible that the Q vector doesn’t

average to zero since ADCs can saturate and it is possible that a particular ADC is more likely to

saturate than the others. In principal the recentering correction is well motivated, in practice this
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correction tends to be minimally impactful

• Ψ shift correction: This is the least well motivated of the corrections. In principal the event plane

distributions should all be flat since there is no preferred event plane, this correction takes each Ψ

distribution (full/east/west) and applies a flattening method which flattens in harmonics of the distri-

bution (decomposed into sines and cosines). The harmonics of the distribution are then subtracted off.

Typically only the first few harmonics are non-zero. This is a steamroller that runs over the distribu-

tion. The best justification for why the shift correction is okay is the ΨE vs ΨW plot where the ΨE vs

ΨW are separately corrected. In such a plot the correlation is seen to be better after the shifting. We

have done nothing, in such a case, to require that to happen. The correction is done to 20th order, this

is overkill but it isn’t expensive to do.

For plots illustrating the different event planes at various degrees of correction see sec. 4.2.

3.2 Resolution correction

Due to finite particle statistics any event plane has some limitation on how well it can be measured. The res-

olution is given by the deviation of the measured plane (see eq. 1.4) from the true reaction plane (averaging

over all events)

Rn = 〈cos(n(Ψn−ΨRP))〉 (3.5)

This resolution is driven by the resolution parameter, χ,

χ = vn
√

M (3.6)

where M is the particle multiplicity and vn is the flow coefficient from eq. 1.5. The greater the flow the

tighter the momentum correlation and the higher the multiplicity the more fully the width of the distribution

is determined. The resolution can be written in terms of the resolution parameter and modified bessel

functions Iα

Rn(χ) =

√
π

2
χe−χ2/2

[
I (n−1)

2

(
χ

2/2
)
+ I (n+1)

2

(
χ

2/2
)]

(3.7)
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Thus we can find the resolution if we know the true reaction plane. Of course in any experimental

context this is impossible. To get at this we will consider two subevents (fractions of the total coverage used

to find Ψn) A and B chosen such that they are equal haves of the coverage and thus have equal multiplicity.

The resolution of these subevents must be equal and thus the sub-event plane resolution is given by

Rn,sub =
√
〈cos(n(ΨA

n −ΨB
n ))〉 (3.8)

The full event plane resolution can be solved using the sub-event plane resolution by using eq. 3.7

iteratively using

Rn,full = Rn

(√
2χsub

)
(3.9)

It is important to note that this formulation of the resolution only takes into account the size of the flow

and the finite statistical effect. Other effects may alter the calculation of the resolution. If the subevents

come very close in phase space they may share particle correlations from resonance decays. The subevents

for this analysis are the east and west BBC event planes. These are well separated in rapidity, so resonance

decays are not a concern. Event planes get decorrelated with increased rapidity. This is a physics effect

which is not taken into account in the calculation of the resolution. One would have to perform a study

on decorrelation to know the size of this effect, which is especially difficult for a first-order analysis since

the v1 is identically zero at midrapidity. Another physics correlation not taken into account is momentum

conservation which could affect the forward-backward asymmetry of measured particles.

The resolution is calculated in discrete centrality bins. On a bin-by-bin basis it represents a scaling of

the data as seen in eq. 3.4, which has no affect on the relative uncertainty of the datapoint. However, adding

several such scaled bins together increases the relative error of the datapoints. The resolution can be seen in

fig. 3.8.

Since the v1 is maximum in mid-central collisions the resolution peaks there. One might expect that the

resolution would increase with
√

sNN, however the opposite effect is seen. This is because the flow in the

BBC coverage increases with decreasing
√

sNN. The uncorrected polarization can be seen in fig. 3.9.
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Figure 3.8: Resolution correction as a function of centrality
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Figure 3.9: Polarization measure without applying resolution correction.
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3.3 Detector acceptance correction

The polarization as described in eq. 3.4 assumes a perfect 4π detector. When we performed the integral over

the solid angle in eq. 3.2 the metric used should be dΩ∗p = dφ∗p sin(θ∗pdθ∗p). What we actually get when we

consider limited detector acceptance is

〈sin
(
ΨRP−φ

∗
p
)
〉=

∫ dΩ∗p
4π

dφ∗H
2π

A(pH ,p
∗
p)

∫ 2π

0

dΨRP

2π
sin
(
ΨRP−φ

∗
p
)[

1+αHPH (pH ,ΨRP)sinθ
∗
p · sin

(
ΨRP−φ

∗
p
)]

(3.10)

where pH is the hyperon 3-momentum and A(pH ,p∗p) is a function to account for the acceptance; the

integral of which is unity. Since the polarization can, in principle, depend on the Lambda’s azimuthal angle

and the detector is even with respect to φ we can expand the polarization into a sum over even harmonics:

PH
(
ΨRP−φ

∗
p, pH

T ,η
H)= ∞

∑
n=0

P(2n)
H

(
pH

T ,η
H)cos

{
2n
[
ΨRP−φ

∗
p
]}

. (3.11)

In this polarization analysis we are not quoting any such azimuthal dependence of the signal so we quote

the polarization averaged over all possible values of φH −ΨRP:

PH
(

pH
T ,η

H)≡ PH
(
ΨRP−φ∗p, pH

T ,η
H
)
= P(0)

H

(
pH

T ,η
H) (3.12)

By substituting eq. 3.11 into eq. 3.10 and integrating over the reaction plane we get

〈sin
(
ΨRP−φ

∗
p
)
〉= αH

2

∫ dΩ∗p
4π

dφ∗H
2π

A(pH ,p
∗
p)sinθ

∗
p

[
PH
(

pH
T ,η

H)− 1
2

cos
[
2
(
φH −φ

∗
p
)]

P(2)
H

(
pH

T ,η
H)] .
(3.13)

From here the observable PH = 8
παH
〈sin

(
ΨRP−φ∗p

)
〉 can be written

8
παH
〈sin

(
ΨRP−φ

∗
p
)
〉= 4

π
sinθ∗pPH

(
pH

T ,η
H)− 2

π
sinθ∗p cos

[
2
(
φH −φ∗p

)]
P(2)

H

(
pH

T ,η
H)

= A0
(

pH
T ,η

H)PH
(

pH
T ,η

H)−A2
(

pH
T ,η

H)P(2)
H

(
pH

T ,η
H) , (3.14)

where the functions A0
(

pH
T ,η

H
)

and A2
(

pH
T ,η

H
)

are defined by the average of sinθ∗p and
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sinθ∗p cos
[
2
(
φH −φ∗p

)]
over the detector acceptance according to

A0
(

pH
T ,η

H)= 4
π

sinθ∗p ≡
4
π

∫ dΩ∗p
4π

dφ∗H
2π

A(pH ,p
∗
p)sinθ

∗
p (3.15)

A2
(

pH
T ,η

H)= 2
π

sinθ∗p cos
[
2
(
φH −φ∗p

)]
≡ 2

π

∫ dΩ∗p
4π

dφ∗H
2π

A(pH ,p
∗
p)sinθ

∗
p cos

[
2
(
φH −φ

∗
p
)]
. (3.16)
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√
sNN A0 A0 error

7.7GeV 1.034 2.56e-4
11.5GeV 1.032 1.59e-4
14.5GeV 1.026 1.23e-4
19.6GeV 1.027 9.26e-5
27GeV 1.026 6.45e-5
39GeV 1.022 5.75e-5

Table 3.1: A0 averaged over pH
T and ηH

3.3.1 Detector acceptance correction results

Tab. 3.1 shows the numerical results for A0 averaged over pH
T and ηH . We do not look at the dependencies

for this measurement since the quoted values for the measurement itself already are integrated over pH
T and

ηH . The polarization is divided by these numbers to arrive at the acceptance corrected values.
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3.4 Mass background

When we try to find Λs and Λs it is done statistically by cutting on the spatial properties of the final state

daughters as can be seen in sec. 4.4.2. Thus a significant number of the “Λs” we measure are, in fact, statis-

tical combinations of otherwise unrelated protons and pions. These particles make up the mass background

of the measurement. The Λs are taken from the proton-pion invariant mass range 1.108GeV < minv <

1.125GeV which is illustrated in fig. 3.10.

Figure 3.10: Λ counts as a function of invariant mass. The signal region (1.108GeV < minv < 1.125GeV) is
highlighted in red.

We need to scale the data appropriately by the purity of this signal. The size of the background con-

tribution is estimated by a linear extrapolation from between the two limits. The counts under that line is

the “background” (denoted B) and the total counts in the signal region minus the background is the “signal”

(denoted S). The purity is shown in tab 3.2.

The signal for the Lambda polarization could leak into the mass wings via protons which are real Lambda

daughters being paired with pions which are not their siblings. This effect is difficult to quantify but it isn’t as

incredible as it might sound. Proton DCA cuts are designed to pick only non-primary protons, the majority

of which should come from Lambdas. The off mass signals we see may turn out not to be anomalies, as

they persist through systematic checks of signal dependencies (as in different regions of EΛ, yΛ, centrality,

φΛ, and the suite of topology cuts). If the the signal in the on-peak portion of the mass distribution is S
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√
sNN Λ: (S+B)/S Λ: (S+B)/S

7.7GeV 1.57137 1.21407
11.5GeV 1.53215 1.2381
14.5GeV 1.77936 1.40786
19.6GeV 1.52895 1.29553
27GeV 1.54274 1.34728
39GeV 1.5029 1.36051

Table 3.2: Purities for Λ and Λ. The 14.5GeV values are noticeable worse. It is likely that this is due to
a detector (the HFT) which was only in during that data collecting period. This deviation can be seen in
fig. 4.55.

and the height of the background is B we can do a similar subtraction of the off mass component as a

flow measurement would do. In the final analysis we to not take this scaling into account (we assume zero

background) but this calculation is important for the systematic errors. The off mass component is averaged

from the minv > mΛ and the minv > mΛ component. Looking at the on mass peak Lambdas we measure

〈sin(Ψ1−φ
∗
Λ)〉On Peak =

S〈sin(Ψ1−φ∗
Λ
)〉Λ +B〈sin(Ψ1−φ∗

Λ
)〉Off Peak

S+B
(3.17)

Of course we want to know the Λ portion of the above equation so the mass corrected value takes the

form

〈sin(Ψ1−φ
∗
Λ)〉Λ =

S+B
S
〈sin(Ψ1−φ

∗
Λ)〉On Peak−

B
S
〈sin(Ψ1−φ

∗
Λ)〉Off Peak (3.18)

Since we relegate the consideration of a signal in the off mass term to the systematic errors only the

first term in eq. 3.18 is relevant here. Thus the purity correction is multiplicative and does not affect the

significance of the data.
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3.5 Helicity efficiency

An efficiency issue which is important for this analysis has to do with the direction the Lambda daughters

are emitted in the rest frame of the Lambda with respect to the momentum of the Lambda in the lab frame.

The root of this issue is that very low momentum protons are much more likely to be measured than very low

momentum pions. As can be seen in sec. 4.3 the analysis is performed with minimum requirements on the

pT and the number of TPC pad rows the track to ensure track quality. The radius of curvature is proportional

to the mass, thus the radius of curvature for the helix of a proton in a magnetic field is approximately 7 times

larger than for the pion. A low momentum pion may simply circulate inside the TPC or hit very few pad

planes.

Since the emission direction of a proton in the Λ’s rest frame is, statistically, determined by the Λ’s

spin a positive helicity Λ will emit a pion opposite it’s direction of motion. In such a case the pion has a

very small momentum in the detector frame due to the direction of the boost. In the opposite scenario of a

negative helicity Λ the resulting proton will have low momentum, but a considerably higher reconstruction

efficiency than the low momentum pion for a the positive helicity Λ. This is, of course, the opposite scenario

for the Λ due to the tendency for the anti-proton to be emitted opposite the direction of the Λ spin (thus the

negative value of α
Λ

). To summarize STAR has a higher efficiency to measure positive helicity Λs and

STAR has a higher efficiency to measure negative helicity Λs. An example for Λs is shown in fig. 3.11.

It’s plain to see that in the absence of a global polarization signal this cannot create a polarization

signal. The affect on the signal from an overabundance of Lambdas emitted in some direction relative to

the coordinates of the fireball (e.g. due to v2) is explicitly canceled by the same abundance with opposite

average helicity emitted 180◦ in φ. In sec. 3.5.1 I’ll show this effect in data and simulation. In sec. 3.5.2 I’ll

describe how this efficiency modifies the measured (φ averaged) polarization signal given a nonzero measure

of PH . It is roughly estimated that this efficiency increases the measured polarization by 7%. This could

also have some relevance to Chiral Vortical Effect (CVE) measurements. Appropriate systematic error bars

are considered in sec. 5.3. In these sections I’ll use a “*” to denote the rest frame of a Lambda.
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Figure 3.11: Diagram to show the poor efficiency of Lambdas with low momentum pion daughters as
compared to Lambdas with low momentum proton daughters. Dashed white lines are Λs’ momenta in the
lab frame (the two examples are chosen to have the same finite decay length), blue arrows show proton
momentum direction the the mother Λ frame, and red arrows depict the pion momentum direction the the
mother Λ frame. The “*” denotes the rest frame of the Λ.
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3.5.1 Description of helicity efficiency

One of the ways to see this helicity efficiency is to look at the dot product between a Lambda’s momentum

direction in the lab frame and the proton’s momentum direction in the rest frame of the Lambda (p̂∗p · p̂Λ).

The polarization itself is small enough that it is appropriate to take PH = 0 when interpreting the figures in

this section. Even with polarization if we don’t input anything about the collision orientation in the detector

coordinate system one would expect the emission direction of the proton to be totally independent of the Λ

momentum. For collected data shown in fig. 3.12 there is a clear bias for p̂∗p to point in the opposite direction

as p̂Λ. The simulation data in fig. 3.13 is the same cut, but from HIJING simulation data. In the simulation

data we can take the pure Λs with no cuts applied and compare the distribution when we require a minimum

pT (as in done in the data). Clearly the driver of this effect is the pion pT .

Figure 3.12: p̂∗proton · p̂Λ for 39GeV. Despite the axis label this is not normalized. This quantity essentially the
same for all

√
sNN. Naturally, physically, this plot should be totally flat since there should be no preferred

direction for proton momentum (ignoring some sort of coupling of polarization with emission angle and
Lambda yields - which we can basically ignore).
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Figure 3.13: This is the same as fig. 3.12, but made using HIJING data. The black curve is from pure
simulation Λs. The blue curve is made from requiring a minimum track pT = 0.15GeV.
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To see how this affects the data one can look at
〈

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
vs. Ψ1−φΛ,Λ̄. There is a sign error

In the following plots the quantity −
〈

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
(that is, without all possible scalings) is plotted.

One might readily notice that there is a sign error in this expression as compared to eq. 3.13. This is due to

a sign error in the original STAR paper [44], for which there is now a published erratum.

I’ve elected to show two energies to make a particular point here. The Λ results for 39GeV are shown

in fig. 3.14 and the results for 27GeV are shown in fig. 3.16. Similarly The Λ results for 39GeV are shown

in fig. 3.15 and the results for 27GeV are shown in fig. 3.17. The most striking feature of these figures, the

sinusoidal behavior, is quite readily understood. As one rotates around the fireball starting from p
Λ,Λ point-

ing in 0◦ (relative to the fireball coordinates) one expects there to be no effect from the helicity dependence,

because, regardless of value of the inefficiency the distribution of p̂∗p,p is still centered around 180◦. When

p
Λ,Λ points at 90◦ then, on average, p̂∗p,p points down towards 270◦, which, as we know from fig. 3.2 is the

direction of the angular momentum of the system. For all of these figures I made the rather large minimum

pT cut of 1GeV. This is done merely to accentuate these effects. It can change the size, but not the sign.

Figure 3.14: −〈sin(Ψ1−φ∗
Λ
)〉 vs. Ψ1−φΛ for 39GeV Λs with pT > 1GeV. The data have been fit by the

function p0 + p1*sin(x+p2). The overall sinusoidal shape comes from the effect mentioned above and seen
in fig. 3.12. The specific phase shift comes from the STAR magnetic field which increases with pT . 39GeV
data has a RFF field alignment. The minus sign on the y axis corrects a sign mistake made early in the
analysis.

There is a more subtle effect going on in the phases, which is why 27GeV and 39GeV data is shown
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Figure 3.15: −
〈
sin
(
Ψ1−φ∗

Λ̄

)〉
vs. Ψ1−φΛ̄ for 39GeV Λs with pT > 1GeV. The data have been fit by the

function p0 + p1*sin(x+p2). The overall sinusoidal shape comes from the effect mentioned above and seen
in fig. 3.12. The specific phase shift comes from the STAR magnetic field which increases with pT . 39GeV
data has a RFF field alignment. Note that the phase is opposite in sign to what is seen in fig. 3.14. The minus
sign on the y axis corrects a sign mistake made early in the analysis. For Λs, since the decay parameter is
negative, this axis is true to the sign of the polarization.

Figure 3.16: −〈sin(Ψ1−φ∗
Λ
)〉 vs. Ψ1−φΛ for 27GeV Λs with pT > 1GeV. The data have been fit by the

function p0 + p1*sin(x+p2). The overall sinusoidal shape comes from the effect mentioned above and seen
in fig. 3.12. The specific phase shift comes from the STAR magnetic field which increases with pT . 27GeV
data has a FF field alignment. Note that the phase is opposite in sign to what is seen in fig. 3.14. The minus
sign on the y axis corrects a sign mistake made early in the analysis.
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Figure 3.17: −
〈
sin
(
Ψ1−φ∗

Λ̄

)〉
vs. Ψ1−φΛ̄ for 27GeV Λs with pT > 1GeV. The data have been fit by the

function p0 + p1*sin(x+p2). The overall sinusoidal shape comes from the effect mentioned above and seen
in fig. 3.12. The specific phase shift comes from the STAR magnetic field which increases with pT . 27GeV
data has a RFF field alignment. Note that the phase is opposite in sign to what is seen in fig. 3.16. The minus
sign on the y axis corrects a sign mistake made early in the analysis. For Λs, since the decay parameter is
negative, this axis is true to the sign of the polarization.

here. One might see that the phase for Λs (which can be seen from the fit values) has an opposite sign

between fig. 3.14 and fig. 3.16. The same is true for fig. 3.15 and fig. 3.17. Furthermore the sign of the

phase for Λs is opposite that for Λs for plots of the same
√

sNN. The STAR magnet can be operated at 0.5T,

which is called Full Field (FF), and -0.5T, which is called Full Field (RFF). The 27GeV was recorded in

the FF configuration, while the rest of the BES (including 39GeV) was recorded using the RFF alignment.

The phase thus must have some dependence on the charge of the daughter particles under consideration.

Our conclusion is that this phase is a result of finite resolution in the creation vertex of the daughters. For

p
Λ,Λ pointing in 0◦ in the FF configuration the magnetic field points in +ẑ so the proton will appear to

be bent slightly towards positive ŷ which means negative L̂. This imperfection leads to a negative value

of sin(Ψ1−φ∗
Λ
) for such Λs. This effect is opposite for Λ̄s. For the RFF this effect acquires yet another

negative sign to keep track of and, thus, the observed phase qualitatively matches the prediction of finite

vertexing.

Finally I want to compare these results to HIJING data as seen in fig. 3.18. In the HIJING data we are

unable to reconstruct and angular momentum, so it is taken to be in the +y direction (owing to the previously

mentioned sign error from older published STAR data). In fact the HIJING data depicts a variant of the
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Figure 3.18: As in fig. 3.13 with HIJING data. The black curve is from pure simulation Λs. The blue curve
is made from requiring basic reconstruction cuts. This has the assumption that the Ψ1 = 0.

polarization measure where the spin of the Lambda is first determined via the direction of the (anti)proton.

This spin 4-vector is given the magnitude of 1/2 and it is then boosted into the detector frame. Fig. 3.18

depicts the cosine of the angle of this boosted spin vector. Figs. 3.19, 3.20, and 3.21 use a related measure,

which has since been abandoned, Sy ≡ ~spin · L̂. One thing to note is that Sy is not technically constrained

because a boost factor can be arbitrarily large. However, as can be seen from fig. 4.56, the Lambdas are

fairly classical so the boost typically does very little. The magnitude of Sy/S is (mostly) constrained to be

less than 1. We have found that this value is quantitatively very comparable to PH , and no variations are

known to exist qualitatively. I think taking these values to be qualitative markers of PH is totally acceptable.

At any rate there is no particularly strong conclusion we can reach from HIJING given the relatively

poor statistics, but it is of some value to see that we can turn the effect off by removing the minimum pT

requirement of the track, as seen in fig. 3.18. HIJING also allows us to at the effects of detector acceptance,

which is of some archival value. Fig. 3.19 shows the effect that the |η| < 1 cut has on the data, fig. 3.20

shows what the minimum pT cut does to limited acceptance window, and fig. 3.21 shows what this value

looks like in very extreme η windows.
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Figure 3.19: As in fig. 3.13 fig. 3.21 tells us how looking at Sy within the STAR η range changes the
underlying distribution.

Figure 3.20: Finally we see what the effect the helicity efficiency (Fig 3.12) has on the underlying distribu-
tion (fig. 3.19). Now we see an asymmetry in the Sy distribution from the efficiency.
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Figure 3.21: As in fig. 3.13 The figure on the left is a Sy for a narrow slice ηΛ at mid-rapidity while the
figure on the right is a narrow slice very backward in η. For the first case the Λ in emitted in the same x− y
plane as L̂ in the second figure it is almost perpendicular to L̂. Since the proton tends to be emitted with
basically the same momentum as the Lambda these tendencies make sense. The left figure is for collisions
in the center of the detector and the right figure is for very forward collisions.

3.5.2 Consequence of helicity efficiency

For the figures in sec. 3.5.1 if we assume that there is no net-polarization signal all of those plots of polar-

ization as a function of φΛ will average to zero, as any sine or cosine will over that range. If there actually

is a polarization signal then there are some modifications which must be made to that conclusion. The first

exception I’ll point out is that the polarization could have a dependence on φΛ. As long as that dependence

is second order it will still cancel. We haven’t seen any evidence of any second order signal, which likely

means the signal itself is just very small. Higher order φΛ could potentially exist, but we will assume that

no such signal exists. This section will investigate a different affect assuming some nonzero polarization.

First I’ll have to point out that the y axis of fig. 3.14 actually depicts the projection of the proton’s

momentum in the Λ mother’s frame onto the direction opposite the angular momentum, thus it is requiring

an overall sign flip in y. For a polarized Λ emitted in the φΛ = π/2 direction the polarization measure will be

some combination of the real tendency for Λs to be polarized and the tendency to not reconstruct Λs which

would be called “negatively polarized”. The real polarization of the Λs is going to modify the underlying

distribution seen in the black line of fig. 3.13 into a line which is higher on the left-hand side of the figure and
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lower on the right-hand side. The finite polarization will decrease the pion momentum distribution further

leading to a sort of feed-back effect where the number of reconstructed Λs at φΛ = π/2 is larger given a

finite global polarization signal. Similarly the number of reconstructed Λs at φΛ = 3π/2 is smaller given a

finite global polarization signal. The overall effect is that given a finite global polarization signal one cannot

rely on periodicity seen fig. 3.14 to cancel. This argument is shown pictorially below. Fig. 3.22 is a cartoon

of a medium which is polarization while fig. 3.23 is a cartoon of the inverse scenario. Fig. 3.5.2 is a cartoon

of adding these two effects together and fig. 3.25 shows the addition and depletion of Λs as a function of φΛ.

Figure 3.22: A polarized medium with no efficiency effect. An ensemble of spinning Λs (represented as
tops) is emitted with momentum pΛ which has net spin ~SΛ pointing in the direction of angular momentum.

We can learn something from a relatively simple simulation. In the simulation the azimuthal distribution

of the Lambda daughters are chosen by sampling the polarization distribution with a given input polarization.

Then a minimum daughter pT cut is applied to the decayed Lambdas. After the cuts is applied we “measure”

the polarization of the Lambdas and check how much it differs from the input. Naturally this could depend

on other cuts. Not topology cuts (listed in sec. 4.4.2) are possible in a simple simulation and the pT cut
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Figure 3.23: An unpolarized medium with the efficiency effect. An ensemble of spinning Λs (represented
as tops) is emitted with momentum pΛ which has no net spin, but ends up with net spin ~SΛ due entirely to
the efficiency effect.

Figure 3.24: A polarized medium with the efficiency effect. When you add the effects together you get an
apparent polarization which is larger than the real polarization.
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Figure 3.25: Efficiency addition/depletion effect on polarization as a function of φΛ. The natural variance of
the spin is not properly demonstrated due to the complexity of that charge and limited space.

is by far the most important cut. The Lambda momentum for the simulation is chosen by sampling a

real Lambda momentum distribution. Fig. 3.26 shows the ratio of the output to the input polarization as a

function of the pT cut. The simulation data is quite well behaved. The ratio looks fairly linear as a function

of pT cut and dramatically changing the polarization doesn’t seem to have a large affect on the position

of the points. Our nominal cut of pT > 0.15GeV seems to make the apparent polarization about 7%. As

discussed in sec. 5.3 there is a 3.5% systematic error associated with this scaling. This is a little overkill, but

we’re being especially careful. A complimentary study is shown with Λs in fig. 3.27. Since this effects the

abundances of Λ and Λ as a function of emission angle it could have some effect on Chiral Vortical Effect

(CVE) measurements, which seek to measure baryon number separation along the direction of vorticity (as

mentions in sec. 7.6). To avoid charged particles, the Λ/Λ system is a common tool for measuring the CVE.
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Figure 3.26: Ratio of apparent polarization (Pout) as a function of input polarization (Pin) as a function of
the minimum pT cut applied to the Λ daughters. Several different input polarizations are sampled, these
datapoints were spread out for clarity.
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Figure 3.27: Ratio of apparent polarization (Pout) as a function of input polarization (Pin) as a function of the
minimum pT cut applied to the Λ/Λ daughters.

59



3.6 Discussion of statistical error

There is not much to discuss in this section but I want to clearly enumerate the sources of statistical error.

Systematic errors are discussed in sec. 5. Of course the first thing is the statistical error itself coming from

the variance of the polarization measure. The error bars are appropriately scaled with the various scalings

and corrections we do to the data. The errors on these scalings make up the systematic error of the measure-

ment. A detailed discussion on the error for the mass purity correction can be found in sec. 5.1.2. The other

scalings (αH the decay parameter, the event plane resolution correction, and the acceptance correction) all

have associated errors which fall under systematics, and are discussed in sec. 5.3.
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Chapter 4
QUALITY ASSURANCE

When working with real data there are a number of cross-checks we must perform in order to be sure the

data is of high quality. In fact, the data we work with has already gone through a rigorous calibration effort

by members of the collaboration. These checks and cuts are separated into different sections according to

what sort of cuts they are. This section is primarily of archival importance.

4.1 Event QA

The events used in the analysis have the following cuts

• The magnitude of the z component of the primary vertex is≤ 70cm. At 39GeV this is a 40cm cut and

at 11GeV this is 50cm cut.

• TOF multiplicity ≥ 1

• the R vertex component is required to be less than 2cm except in the case of 15GeV where it is less

than 1cm and centered at (0, -0.89) cm.

• The ADC sum for the East and West BBC are separately required to be ≥ 75

• Additionally there is an η symmetry cut so that |(Nη>0−Nη>0)/Ntotal| ≤ 5

• The centrality ID that we get from StRefMultCorr (the STAR centrality definition algorithm) must be

≥ 0

The trigger list for each energy is
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• 7.7GeV: 290001, 290004

• 11.5GeV: 310004, 310014

• 14.5GeV: 440005, 440015

• 19.6GeV: 340001, 340011, 340021

• 27GeV: 360001, 360002

• 39GeV: 280001, 280002

Additionally there is a list of rejected runs which is

• 7.7GeV: 11199124, 11100002, 11100045, 11101046, 11102012, 11102051, 11102052, 11102053,

11102054, 11102055, 11102058, 11103035, 11103056, 11103058, 11103092, 11103093, 11105052,

11105053, 11105054, 11105055, 11107007, 11107042, 11107057, 11107061, 11107065, 11107074,

11108101, 11109013, 11109077, 11109088, 11109090, 11109127, 11110013, 11110034, 11110073,

11110076, 11111084, 11111085

• 11.5GeV: 11148039, 11148045, 11149001, 11149008, 11149010, 11149011, 11149015, 11149047,

11150016, 11150025, 11150028, 11151036, 11151040, 11151050, 11152016, 11152036, 11152078,

11153032, 11153042, 11155001, 11155009, 11156003, 11156009, 11157012, 11158006, 11158022,

11158024

• 14.5GeV: 15046073, 15046089, 15046094, 15046096, 15046102, 15046103, 15046104, 15046105,

15046106, 15046107, 15046108, 15046109, 15046110, 15046111, 15047004, 15047015, 15047016,

15047019, 15047021, 15047023, 15047024, 15047026, 15047027, 15047028, 15047029, 15047030,

15047039, 15047040, 15047041, 15047044, 15047047, 15047050, 15047052, 15047053, 15047056,

15047057, 15047061, 15047062, 15047063, 15047064, 15047065, 15047068, 15047069, 15047070,

15047071, 15047072, 15047074, 15047075, 15047082, 15047085, 15047086, 15047087, 15047093,

15047096, 15047097, 15047098, 15047100, 15047102, 15047104, 15047106, 15048003, 15048004,

15048012, 15048013, 15048014, 15048016, 15048017, 15048018, 15048019, 15048020, 15048021,

15048023, 15048024, 15048025, 15048026, 15048028, 15048029, 15048030, 15048031, 15048033,
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15048034, 15048074, 15048075, 15048076, 15048077, 15048078, 15048079, 15048080, 15048081,

15048082, 15048083, 15048084, 15048085, 15048086, 15048087, 15048088, 15048089, 15048091,

15048092, 15048093, 15048094, 15048095, 15048096, 15048097, 15048098, 15049002, 15049003,

15049009, 15049013, 15049014, 15049015, 15049016, 15049017, 15049018, 15049019, 15049020,

15049021, 15049022, 15049023, 15049025, 15049026, 15049027, 15049028, 15049030, 15049031,

15049032, 15049033, 15049037, 15049038, 15049039, 15049040, 15049041, 15049074, 15049077,

15049083, 15049084, 15049085, 15049086, 15049087, 15049088, 15049089, 15049090, 15049091,

15049092, 15049093, 15049094, 15049096, 15049097, 15049098, 15049099, 15050001, 15050002,

15050003, 15050004, 15050005, 15050006, 15050010, 15050011, 15050012, 15050013, 15050014,

15050015, 15050016, 15051131, 15051132, 15051133, 15051134, 15051137, 15051141, 15051144,

15051146, 15051147, 15051148, 15051149, 15051156, 15051157, 15051159, 15051160, 15052001,

15052004, 15052005, 15052006, 15052007, 15052008, 15052009, 15052010, 15052011, 15052014,

15052015, 15052016, 15052017, 15052018, 15052019, 15052020, 15052021, 15052022, 15052023,

15052024, 15052025, 15052026, 15052040, 15052041, 15052042, 15052043, 15052060, 15052061,

15052062, 15052063, 15052064, 15052065, 15052066, 15052067, 15052068, 15052069, 15052070,

15052073, 15052074, 15052075, 15053027, 15053028, 15053029, 15053034, 15053035, 15053052,

15053054, 15053055, 15054053, 15054054, 15055018, 15055137, 15056117, 15057055, 15057059,

15058006, 15058011, 15058021, 15059057, 15059058, 15061001, 15061009, 15062006, 15062069,

15065012, 15065014, 15066070, 15068013, 15068014, 15068016, 15068018, 15069036, 15070008,

15070009, 15070010

• 19.6GeV: 12113091, 12114007, 12114035, 12114078, 12114092, 12114116, 12115009, 12115014,

12115015, 12115016, 12115018, 12115019, 12115020, 12115022, 12115023, 12115062, 12115073,

12115093, 12115094, 12116012, 12116054, 12117010, 12117016, 12117020, 12117065, 12119040,

12119042, 12120017, 12120026, 12121017, 12121022, 12121034, 12121050, 12121067, 12122019

• 27GeV: 12172050, 12172051, 12172055, 12173030, 12173031, 12173032, 12173033, 12173034,

12174067, 12174085, 12175062, 12175087, 12175113, 12175114, 12175115, 12176001, 12176044,

12176054, 12176071, 12177015, 12177061, 12177092, 12177099, 12177101, 12177106, 12177107,

12177108, 12178003, 12178004, 12178005, 12178006, 12178013, 12178099, 12178120
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• 39GeV: 11199124, 11100002, 11100045, 11101046, 11102012, 11102051, 11102052, 11102053,

11102054, 11102055, 11102058, 11103035, 11103056, 11103058, 11103092, 11103093, 11105052,

11105053, 11105054, 11105055, 11107007, 11107042, 11107057, 11107061, 11107065, 11107074,

11108101, 11109013, 11109077, 11109088, 11109090, 11109127, 11110013, 11110034, 11110073,

11110076, 11111084, 11111085

In addition to the bad runs list 15GeV events are taken only from running days 53-70.
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The multiplicity of charged particles tracked by the TPC at midrapidity (|η|< 1) is shown in fig. 4.1. This

quantity, called the reference multiplicity (or RefMult) is the basis for the STAR centrality determination and

is thus central to our understanding of the collision. Very low multiplicity events may, in fact, not be collider

events. To avoid contamination from incorrectly associated tracks STAR analyses generally do not use the

most peripheral 20% of recorded events. Since the detector is cylindrically symmetric it performs best when

the collisions occur at the center of the detector (0,0,0). It is typical to split consideration between the the z

component of the vertex position (so called Z Vertex) as seen in fig. 4.2 and the distance from the center in

the x− y plane (the R vertex) seen in fig. 4.6-4.11.

The Time Of Flight system also has a separate multiplicity. Often this is checked against the TPC

multiplicity to make sure the detectors are working. The TOF is a fast detector which is an important part of

the trigger. The TOF multiplicity can be seen in fig. 4.3. Since we also use the Beam Beam Counters in this

analysis it’s good to check the sum of the ADC (analog to digital conversion) for the west and the east BBC

separately. This measure is just the sum over the 16 relevant ADCs and can be seen for all relevant
√

sNN in

fig. 4.4 and fig. 4.5. The BBCs are also part of the STAR trigger.

Figure 4.1: Multiplicity of charged tracks (normalized by number for easy comparison) for each
√

sNN used
in this analysis.
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Figure 4.2: Z component of event vertex (normalized by number for easy comparison) in cm for each
√

sNN
used in this analysis.

Figure 4.3: Multiplicity of charged particles as measured by the TOF (normalized by number for easy
comparison) for each

√
sNN used in this analysis.
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Figure 4.4: BBC East ADC sum (normalized by number for easy comparison) for each
√

sNN used in this
analysis. ADC is analog to digital conversion. It is unitless and is roughly proportional to the number of
charged particles that hit the detector.

Figure 4.5: BBC West ADC sum (normalized by number for easy comparison) for each
√

sNN used in this
analysis. ADC is analog to digital conversion. It is unitless and is roughly proportional to the number of
charged particles that hit the detector.
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Figure 4.6: y component of primary vertex vs. x
component of primary vertex (in cm) for 7GeV

Figure 4.7: y component of primary vertex vs. x
component of primary vertex (in cm) for 11GeV

4.2 Event plane determination

For discussion on how the event planes are found see sec. 3.1.

The following plots show the event plane distributions as they are corrected for all relevant energies.

Various corrections are made to three planes. The east event plane is found only via the east BBC, the

west plane is found by the west BBC, and the full event plane is found by combining the Q-vectors of

the subevents. The “recentering correction” and the “shift correction” for the three planes are made totally

independent of each other. The effect of the corrections on the average distribution can be seen in fig. 4.12-

4.17. It is important to note that the distributions become flatter as the corrections are made. The distribution

of event planes themselves must, physically, be flat. The corrections take into account the imperfections of

the detectors.
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Figure 4.8: y component of primary vertex vs. x
component of primary vertex (in cm) for 15GeV

Figure 4.9: y component of primary vertex vs. x
component of primary vertex (in cm) for 19GeV

Figure 4.10: y component of primary vertex vs. x
component of primary vertex (in cm) for 27GeV

Figure 4.11: y component of primary vertex vs. x
component of primary vertex (in cm) for 39GeV
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Figure 4.12: 7GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.

Figure 4.13: 11GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.
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Figure 4.14: 15GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.

Figure 4.15: 19GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.
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Figure 4.16: 27GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.

Figure 4.17: 39GeV Ψ1 distribution as corrections are applied. Blue - Raw, Green - Gain corrected, Magenta
- Recentered, Red - Shifted.
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The one-dimenstional histograms of event plane distributions give some sense of the effect of the cor-

rections, but they tell you nothing about how well the planes are correlated. The resolution of the full event

plane (that is, how well it is determined) is found via the correlation between the east and west planes. Since

the first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated

to the east plane. If this anti-correlation is exact the resolution is 1 (see sec. 3.2). It is one thing to take the

correlation as just a number (as in sec. 4.2.1), but it is also useful to look at this correlation by eye. The

correlation can be seen as a two dimensional histogram in fig. 4.18-4.23 for each relevant
√

sNN.

Figure 4.18: BBC West Ψ1 vs. BBC East Ψ1 for 7GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.
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Figure 4.19: BBC West Ψ1 vs. BBC East Ψ1 for 11GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.

Figure 4.20: BBC West Ψ1 vs. BBC East Ψ1 for 15GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.
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Figure 4.21: BBC West Ψ1 vs. BBC East Ψ1 for 19GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.

Figure 4.22: BBC West Ψ1 vs. BBC East Ψ1 for 27GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.
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Figure 4.23: BBC West Ψ1 vs. BBC East Ψ1 for 39GeV collisions as corrections are applied. Since the
first-order plane is explicitly anti-symmetric in η and φ we expect the west plane to be anti-correlated to the
east plane.
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4.2.1 Event plane resolution

Finally we have a resolution correction factor which is found as described in sec. 3.2. The relative magnitude

of the corrections is the correlator of the east and west planes: cos(Ψ1,W −Ψ1,E), the actual values are found

by inverting Bessel equations (eq. 3.7) using the sub event plane resolution. This resolution is solved for each

central value of the sub-event plane resolution as well as the statistical error bars. Of course the statistical

error bars of the sub-event plane resolution are symmetric, but this is not guaranteed when they are put

through the root finding algorithm. If the sizes of the up and down error bars differed by less than a percent

I just defined the error bar to be the average of them. In fact the difference was less than 1% every time so I

never had to consider what to do in case of asymmetry. The values are

Figure 4.24: Resolution correction as a function of centrality
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4.3 Track QA

An analysis starts with a collection of tracks. In this analysis I do not wish to select tracks which come

directly from the primary vertex. The protons and pions I’m interested in are secondary. Thus the “global”

track list is used. Such tracks do not use the primary vertex as a fit point. It is necessary to apply some

selection criteria to the tracks to ensure their quality. The cuts I use to select tracks are

• Track flag ≥ 0

• 0.15GeV < pT < 10GeV

• |η|< 1

• NHitsPossible ≥ 5

• 15 < Number of hits < 100

• NHitsFit/NHitsPossible ≥ 0.52.

The track flag is a STAR specific thing which is not worth going into detail about here. Tracks of very

low transverse momentum will circulate in the transverse plane of the detector. If the track doesn’t reach

sufficiently far into the TPC it will have fewer fit points and, thus, be of very low quality. To mitigate

this problem we have a minimum pT cut. Very high transverse momentum tracks do not bend much in the

magnetic field. The momentum of the particle is measured by the radius of curvature. If the radius is too

big the momentum resolution suffers. Furthermore we’re interested in “low momentum” physics (that is

particles not produced in hard nucleon-nucleon collisions). For these reasons we have a maximum pt cut

and fig. 4.25 is referenced for comparison.

Technically the TPC can measure tracks beyond |η|= 1, but the efficiency decreases as fewer TPC sec-

tors are hit for very forward tracks. The η cut is chosen so that the track detection efficiency is roughly

uniform over the coverage. The η distribution can be seen in fig. 4.26. In addition to the spatial and resolu-

tion considerations of the η and pT cuts we have corresponding cuts directly on the possible number of TPC

hits, the number of hits recorded, and the ratio of these quantities. These cuts are somewhat more esoteric

and sometimes redundant. In such cases the specific value of the cut is motivated by code considerations
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Figure 4.25: dN
d(pT )

vs pT for charged tracks in the TPC.

(for example to make sure that no division by 0 occurs) rather than physical consideration, though, quali-

tatively, the cuts are physically motivated. The NHitsPossible (as seen in fig. 4.27) cut makes sure that the

reconstructed cut would have passed by a minimum number of TPC rows. This is redundant given the η and

pT . Furthermore there is a cut on the number of hits recorded in the TPC (as seen in fig. 4.28). More hits

means a more well constrained track. In reality there is no chance to get “too many hits”, that is merely put

in the code to be careful. Finally there is a cut on the ratio of these quantities (as seen in fig. 4.29). If the

track passed through the whole TPC but only a few hits were recorded this may be a bug in the track finding

algorithm. Such a track should be thrown away.
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Figure 4.26: dN
dη

vs η for charged tracks in the TPC.

Figure 4.27: dN
dNHits Possible

vs NHits Possible for charged tracks in the TPC.
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Figure 4.28: dN
dNHits

vs NHits for charged tracks in the TPC.

Figure 4.29: dN
d(Fit Ratio) vs Fit Ratio for charged tracks in the TPC.
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4.4 Lambda reconstruction

Now that we have selected “good” events and a have a collection of only the “good” tracks we can start

finding Λs. (Anti)Lambdas are reconstructed from (anti)proton and (anti)pi-minus tracks, so the first step

in the reconstruction is the proton and pion track particle identification. This is discussed in sec. 4.4.1.

Once we have identified the daughters we make a number of cuts based on the topology, or the shape of

the reconstruction. This is discussed in sec. 4.4.2. Reconstruction methodology in no sense differs for

Λs as compared for Λs (except in the particles of interest). The final subsection (sec 4.4.2) shows some

distributions of quantities intrinsic to Λs and Λs.

4.4.1 Daughter PID

This analysis uses TPC dE/dx and the TOF 1/β for PID. TOF information is not required so the TOF mass

cuts are only used if the information exists. The cuts are as follows

• Proton:
∣∣Nσ, proton

∣∣< 3

• Proton: 0.5GeV2 < m2
TOF < 1.5GeV2

• Pion:
∣∣Nσ, pion

∣∣< 3

• Pion: 0.017GeV2−0.013GeV2 ∗ p < m2
TOF < 0.04GeV

The dE/dx, as mentioned in sec. 1.5.1, is the characteristic energy loss of a charged particle per unit

distance as it moves through some medium. This energy loss depends on the charge of the particle, the

details of the medium, and the speed of the particle. The first quantity is found from the curvature of the

track. Almost all measured particles have unit charge. The TPC is filled with so called P10 gas. It is the

mass of the particles that differentiates them by the relation between measured momentum and characteristic

speed. The bands of identification can be seen quite clearly in fig. 4.30-4.35. In such figures the energy loss

is often multiplied by the charge of the particle to separate the particles from the anti-particles. The lines are

fit by the Bethe-Bloch formula in momentum slices and tracks are described by their distance from these fit

lines in units of standard deviations (σs). The cuts of 3σ used in this analysis are quite weak and include a
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number of other types of particles. This PID method does not work well for very high momentum particles

as the lines run together at momentum around 0.8GeV.

Figure 4.30: 7GeV charged track dE/dx vs. p for charged tracks in the TPC.

83



Figure 4.31: 11GeV charged track dE/dx vs. p for charged tracks in the TPC.

Figure 4.32: 15GeV charged track dE/dx vs. p for charged tracks in the TPC.

Figure 4.33: 19GeV charged track dE/dx vs. p for charged tracks in the TPC.
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Figure 4.34: 27GeV charged track dE/dx vs. p for charged tracks in the TPC.

Figure 4.35: 39GeV charged track dE/dx vs. p for charged tracks in the TPC.
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The next round of PID comes from the time of flight (see sec. 1.5.2). The TOF measures the total time it

takes for a particle to go from the collision point to the TOF, which is just outside of the TPC. The timescale

of collision evolution (as seen in fig. 1.4) and the specific freezeout surface of the particle is much too small

an effect to be relevant here. The time measured is discusses as a speed, β. What we get from the TOF,

knowing the momentum from the TPC, is the mass of the particle. Thus PID plots depict inverse β or m2 as

a function of momentum. Inverse β can be seen in fig. 4.36-4.41 while the mass squared scaling can be seen

in fig. 4.42-4.47.

Figure 4.36: 7GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.
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Figure 4.37: 11GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.

Figure 4.38: 15GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.

Figure 4.39: 19GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.
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Figure 4.40: 27GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.

Figure 4.41: 39GeV charged track 1/β vs. p from the TOF with track momentum from the TPC.

Figure 4.42: 7GeV charged track m2 vs p from the TOF with track momentum from the TPC.
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Figure 4.43: 11GeV charged track m2 vs p from the TOF with track momentum from the TPC.

Figure 4.44: 15GeV charged track m2 vs p from the TOF with track momentum from the TPC.

Figure 4.45: 19GeV charged track m2 vs p from the TOF with track momentum from the TPC.
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Figure 4.46: 27GeV charged track m2 vs p from the TOF with track momentum from the TPC.

Figure 4.47: 39GeV charged track m2 vs p from the TOF with track momentum from the TPC.
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4.4.2 Lambda topological cuts

Lambdas are found by comparing pairs of proton and pion tracks and then using selection criteria to narrow

those pairs down to ones which are most likely daughters of Lambdas. This is because we are only capable

of tracking charged tracks and the Lambda decay length is not particularly long. One can see a schematic of

such a pairing in fig. 4.48.

Figure 4.48: Lambda reconstruction schematic displayed on a real STAR event.

The selection criterion on pairs of tracks are called topological cuts. Frequently I refer to the DCA,

or distance of closest approach. This can mean the closest approach of two helices extended forward and

backward in time. It can also mean the distance of closest approach for a helix to a given point. The scheme

for the cuts is rather complicated as the cut values themselves depend on whether or not the candidate proton

and pion separately have TOF information.

• (Proton TOF and Pion TOF, Proton TOF and !Pion TOF, !Proton TOF and Pion TOF, !Proton TOF

and !Pion TOF)

• Proton DCA to PV ≥ (0.1, 0.15, 0.5, 0.6) cm
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• Pion DCA to PV ≥ (0.7, 0.8, 1.5, 1.7) cm

• Lambda DCA to PV ≤ (1.3, 1.2, 0.75, 0.75) cm

• Lambda decay length ≥ (2, 2.5, 3.5, 4) cm

• Proton to Pion DCA to each other ≤ 1 cm

• pΛ ·EndVertex > 0 is a cut ensuring that the Lambda is moving away from the primary vertex. “End-

Vertex” is the decay vertex of the Lambda.

• Lambdas are taken in the mass window (1.115683±0.005)GeV

• As described in section 5.1 for systematic error reasons we actually do not include Lambdas for which

the pion has TOF data and the proton does not

The meaning of these quantities can be seen in fig. 4.49.
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Lambda Topological Cut Schematic

Λ DCA

Proton 
Track

Λ Decay 
Length

Λ “track”

Pion 
Track

Primary 
Vertex

Proton to 
Pion DCA

Proton 
DCA

Pion DCA

● Proton DCA is a cut on a minimum
● Pion DCA is a cut on a minimum
● Proton to Pion DCA is a cut on a 
maximum
● Λ DCA is a cut on a maximum
● Λ Decay Length is 
a cut on a minimum

(DCA > x)

Figure 4.49: Diagram of how cuts are applied to reconstruct Lambdas. The proton and pion are depicted as
circles in order to represent that they are, in fact, helices of the given radius. The diagram is thus a depiction
in the transverse plane.
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It should be mentioned here that the quantities I am plotting below are made by greatly loosening, though

not eradicating, the cuts. Therefore all such plots display quantities after all of the cuts, in some form, have

been applied to them. This means that there will be some non-trivial structure. The DCA distribution of the

protons can be seen in fig. 4.50, while that for the pions can be seen in fig. 4.51. We want the protons and

the pions to be coming from a Lambda, and thus be not primary. One expects daughters of Lambdas (since

the Lambda has some finite decay length) to have helices which miss the primary vertex of the collision.

This means we have a minimum cut on the daughter DCA to primary vertex.

Figure 4.50: Counts vs. proton DCA to the primary vertex (cm) for 19GeV collisions.

In order for the two daughters to be at all related by a Lambda mother vertex the proton and pion must

have been born very close to each other. To ensure this we have a maximum on the DCA from the proton

helix to the pion helix. This quantity, here denoted as the “daughter DCA”, is shown in fig. 4.52. Unlike the

daughters, we want the reconstructed Lambdas to be primary. Thus we have a maximum on the DCA of the

Lambda to the primary vertex. This quantity is shown in fig. 4.53. Finally we have a minimum reconstructed

decay length for the Lambda. Combinatoric Lambdas with very low decay lengths are likely to be random

combinations of protons and pions. Thus we have a minimum cut on the decay length. This quantity is

shown in fig. 4.54.

Finally to evaluate the efficacy of our collection of cuts we must look at the invariant mass distribution
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Figure 4.51: Counts vs. pion DCA to the primary vertex (cm) for 19GeV collisions.

Figure 4.52: DCA of one daughter track to another (cm) for 19GeV collisions.

Figure 4.53: Counts vs. Lambda DCA to the primary vertex (cm) for 19GeV collisions.
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Figure 4.54: Counts vs. Lambda decay length (cm) for 19GeV collisions.

of the Lambdas. This is shown in fig. 4.55. As mentioned a cut is made around the peak to make sure that

as many of the particles as can be drawn from this distribution are real Lambdas.

Figure 4.55: dN
dmΛ

vs. mΛ(GeV). Note the strange mass distribution at 15GeV, probably from the HFT
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Lambda quantities

Now that we have reconstructed Λs and Λs it is worth looking at some of the quantities intrinsic to these

particles. In this section there are plots for the pT the rapidity and the φ distributions. For Λs these are

fig. 4.56, fig. 4.57, and fig. 4.58. For Λs these are fig. 4.59, fig. 4.60, and fig. 4.61 respectively. One might

note that the φ distributions are not in fact flat. Physically, of course, they must be. The TPC is made of

12 sectors with some finite gap between the sectors. This leads to the gaps in the acceptance seen in these

figures. The effect is somewhat washed out by the fact that the φ of the Lambda is not exactly the φ of its

daughters, which are really effected. Furthermore it is typical for tracks to be detected across multiple TPC

pad rows. In such a case not being detected in the boundary is not too detrimental. This ladder effect is,

naturally, less for low momentum tracks. Furthermore some sectors do not perform as well as others. This

can be seen in the relative number of counts at a given φ.

Figure 4.56: Λ pT . The y axis is counts in bin scaled by the total counts so that all
√

sNN can be shown
together.

97



Figure 4.57: Λ y (rapidity). The y axis is counts in bin scaled by the total counts so that all
√

sNN can be
shown together.

Figure 4.58: Λ φ. The y axis is counts in bin scaled by the total counts so that all
√

sNN can be shown
together. Note the opposite direction of the 27GeV data. This is due to the fact that the magnetic field
orientation in 27GeV was “Full Field”, while for the rest of the BES it was “Reversed Full Field” (which is
same magnitude, opposite polarity).
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Figure 4.59: Λ pT . The y axis is counts in bin scaled by the total counts so that all
√

sNN can be shown
together.

Figure 4.60: Λ y (rapidity). The y axis is counts in bin scaled by the total counts so that all
√

sNN can be
shown together.
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Figure 4.61: Λ φ. The y axis is counts in bin scaled by the total counts so that all
√

sNN can be shown
together. Note the opposite direction of the 27GeV data. This is due to the fact that the magnetic field
orientation in 27GeV was “Full Field”, while for the rest of the BES it was “Reversed Full Field” (which is
same magnitude, opposite polarity).
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Chapter 5
SYSTEMATIC ERRORS

Summary of systematic errors to be discussed in detail later in this section

• Mass purity/residual mass background correction (sec. 5.2): This is the primary source of errors.

• Error in αH (sec. 5.3): ∼ 2% scaling error.

• Error in resolution correction (sec. 4.2.1 and sec. 5.3): < 1%

• Error in A0 determination (tab. 3.1 and sec. 5.3): < 0.03%

• There is an error in the helicity efficiency effect on the data (sec. 3.5.2 and sec. 5.3): < 3.5%

• Error in resolution correction from momentum conservation effects (sec. 5.4): ∼ 2%

• For feed down corrected results (relevant to sec. 7) there is a factor 2 systematic error coming from

uncertainty in the temperature T (sec. 5.5)

5.1 Topological cut dependencies

A typical source of systematic errors is the dependence of the signal on the cutset. In this section we look

for systematic dependecies of the polarization on our specific choices of topological cuts. The nominal

cuts used in the analysis can be found in sec. 4.4.2. The first thing we tried doing was making each cut

individually tighter or looser so we had ± 25% of the number of Lambdas used in the analysis. The idea

was that we could estimate the systematic error by comparing the tight-cut and the loose-cut results. The

difference turned out to be possible contribution to systematic error (see sec. 5.1.4). In order to get a finer

101



handle on this difference we tried to look at the covariance of the polarization with the topological cuts.

The result from this study is that “systematic errors are smaller than statistical”. The statistical fluctuations

simply dominate any deviation from zero covariance that we can see.

5.1.1 Covariance method idea

The covariance of two variables (say P for polarization and X for some cut quantity e.g. pion DCA) is

defined to be

Cov(P,X) = 〈PX〉−〈P〉〈X〉. (5.1)

This, of course, tells us how the cut quantities and the polarization measure co-vary. We look at each

covariation with each variable separately. The advantage here is that we can use much more Lambda can-

didates that wouldn’t pass the nominal cuts in order to understand a trend rather than a simple difference.

What we really want to get systematic errors is a description of how the polarization depends on the variable.

A slope parameter can be made that treats the variation as approximately linear:

Slope(P(X)) =
Covariance(P,X)

Variance(X)

=
〈PX〉−〈P〉〈X〉
〈X2〉−〈X〉2

.

(5.2)

Once we have a slope that describes the variation of the polarization with X we can get the systematic

error by multiplying by a reasonable range in the cut quantity (∆X):

Error = ∆X ∗Slope. (5.3)

A reasonable range for ∆X is, for each cut, the difference between where you might make a loose version

and a tight version of the cut. As it happens the ∆X is just a scaling and, since we don’t get a significant

slope value, it is not necessary to use when we find no clear non-statistical deviation from zero for the slope.

There is a subtlety here I’ve glossed over which is that the apparent magnitude of the polarization

depends on the purity of Lambda sample which, in turn, depends on the value of the quantity I’m cutting

on. To account for this I can scale the slope by the purity of the mass distribution. Doing this requires a
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characterization of the slope of the purity distribution. For example: suppose I want to know the covariance

of the polarization with the pion DCA. If I look in bins of pion DCA for Lambda candidates the ones with

the largest DCA have the purest Lambda distribution. Since we normally scale the measured polarization

by (S + B)/S (assuming zero polarization in the mass background) the polarization will be of a greater

magnitude than that measured at low pion DCA. So, even if there is no dependence of the polarization on

the specific cut, if no purity correction is made to account for the purer sample, one will measure a larger

apparent polarization for the tighter cutset. Thus a positive covariance between the polarization and the cut

will be seen. Given that we have a positive net polarization we might expect a trivial positive covariance for

pion DCA to appear just from variation of the purity with pion DCA.

What we measure without correcting for the purity is the so called “measured” slope, we can recast

eq. 5.2 as

Slope(P(X))M =
d

dX
PM (5.4)

where M denotes the “measured” quantity and T denotes a “true” quantity. We can relate this to the

true polarization which we get from purity correcting the measured values, provided we assume that we can

describe the variation of S/(S+B) with X by a linear function with slope mX

Slope(P(X))M =
d

dX

(
S

S+B
PT
)

=
S

S+B
d

dX
PT +

(
d

dX
S

S+B

)
PT

=
S

S+B
SlopeT +mX PT

≈
〈

S
S+B

〉
SlopeT +mX

〈
PT〉

(5.5)
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5.1.2 Mass purity

An example of purity changing with a cut quantity:

Figure 5.1: Invariant mass (GeV – right axis) as a function of pion DCA (cm – left axis) for cut index 1
(proton has TOF info, pion does not). Vertical axis is counts.
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A linear fit of the purity for various quantities can be seen below

Figure 5.2: Lambda invariant mass purity as a function of pion DCA fit with a linear function (p0 + p1 ∗ x)
for cut index 1
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Figure 5.3: Lambda invariant mass purity as a function of proton DCA fitted with a linear function (p0 +
p1 ∗ x) for cut index 1

Figure 5.4: Lambda invariant mass purity as a function of daughter DCA fit with a linear function (p0+ p1 ∗
x) for cut index 1
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Figure 5.5: Lambda invariant mass purity as a function of Lambda DCA fitted with a linear function (p0 +
p1 ∗ x) for cut index 1

Figure 5.6: Lambda invariant mass purity as a function of Lambda decay length fitted with a linear function
(p0 + p1 ∗ x) for cut index 1
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Clearly a linear approximation is not ideal for several of these functions, though it is worth noting that

where it really breaks down is generally beyond the aforementioned reasonable cut range. The only thing to

be done is to change the range over which the fit is done and try to overestimate mX . The range was varied

but the nominal fit range for these functions is (where Min. refers to the lower value of the cut and max

refers to the upper value)

Cut description cut index 0 cut index 1 cut index 2 cut index 3
PionDCA min 0.0 0.0 0.5 0.5
PionDCA max 3.0 3.0 3.0 3.0

ProtonDCA min 0.0 0.0 0.0 0.0
ProtonDCA max 3.0 3.0 3.0 3.0

DaughterDCA min 0.0 0.0 0.0 0.0
DaughterDCA max 2.0 2.0 2.0 2.0
LambdaDCA min 0.0 0.0 0.0 0.0
LambdaDCA max 2.0 2.0 2.0 2.0

LambdaDecayLength min 1.167 1.167 3.0 3.0
LambdaDecayLength max 8.0 8.0 8.0 8.0

Table 5.1: Range of linear fit of mass purity as a function of respective cut quantity
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5.1.3 Results

Since the error bars depend so much on which cut I’m considering and the cut index of the Lambda I may

have to duplicate a few of the plots zoomed in. What we’re looking for is a clear non-statistical deviation of

the slope. Each point on the following plots represents the covariance of the polarization with various cut

quantities (e.g. pion DCA). There is a separate point for each type of Lambda (cut index 0, 1, 2, or 3).

Figure 5.7: Λ polarization covariance with cut quantities for each Λ cut index.
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Figure 5.8: Λ polarization covariance with cut quantities for each Λ cut index; zoomed in.

Figure 5.9: Λ polarization “slope” from covariance with cut quantities for each Λ cut index. This is not
corrected for mass purity.
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Figure 5.10: Λ polarization “slope” from covariance with cut quantities for each Λ cut index. This is
corrected for mass purity.

Figure 5.11: Λ polarization “slope” from covariance with cut quantities for each Λ cut index; zoomed in.
This is corrected for mass purity.
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The only hints of non-statistical deviation comes from cut index 2, but cut index 2 is only 3% of the data.

Cut index 2 represents Lambda’s whose daughter proton has no TOF information while the pion daughter

does. This is a very poor quantity Lambda candidate and since it is such a small percentage of the total

number of Lambdas we can throw these Lambdas out with impunity. There is no bias introduced here, these

are simply poor quality Lambdas. Therefore (throwing out cut index 2 Lambdas) there is no non-statistical

deviations from covariation of the polarization and any of the cut quantities. To double check this conclusion

I’ve increased/decreased the maximum of the fit range for the purity slope mX . In the following plots the the

maximum of the fit is multiplied by a rangefactor.

Figure 5.12: Λ polarization “slope” from covariance with cut quantities for each Λ cut index. This is
corrected for mass purity. The rangefactor is 0.5.
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Figure 5.13: Λ polarization “slope” from covariance with cut quantities for each Λ cut index; zoomed in.
This is corrected for mass purity. The rangefactor is 0.5.

Figure 5.14: Λ polarization “slope” from covariance with cut quantities for each Λ cut index. This is
corrected for mass purity. The rangefactor is 2.

113



Figure 5.15: Λ polarization “slope” from covariance with cut quantities for each Λ cut index; zoomed in.
This is corrected for mass purity. The rangefactor is 2.
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5.1.4 Simple cut variation

This section is for historical purposes. The results shown here do not provide final systematic errors.

I’ll focus on errors from the topology cuts for the Lambda as they are the ones specific to my analysis.

To get a handle on the errors I varied each cut for 19GeV by either making the cut tighter so that I had 75%

of the Lambdas as would be found using nominal cuts or I made the cut looser so that 125% of the Lambdas

were found. The result for each cut for both Λ and Λ̄ are shown in fig. 5.16 and fig. 5.17.

Figure 5.16: 〈sin
(
Ψ1−φ∗

Λ̄

)
〉 as a function of cut variation. One cut at a time is loosed or tightened so that

125% or 75% of the Lambdas are found.
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Figure 5.17: 〈sin
(
Ψ1−φ∗

Λ̄

)
〉 as a function of cut variation. One cut at a time is loosed or tightened so that

125% or 75% of the Lambdas are found.
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Note that in the previous two figures each data point is scaled by the (Signal+Background)/Signal of

the mass distribution so that the results are not affected by the purity changes that would occur by loosen-

ing/tightening a cut. The systematic error is determined to be the largest variation between the tight cuts and

loose cuts (e.g. for Λ the difference between Lambda DCA tight and Lambda DCA loose).

5.2 Residual effect

There is a systematic error from the residual signal we see in the wings of the mass distribution which should

be in the mass background of the results (see sec. 3.4). In sec. 3.4 we posit that this small residual effect

comes from Lambdas which have proton daughters that get matched up with pion who does not come from

a Lambda. Many of the protons in an event come from Lambdas and it is a much smaller percent of the

pions. A Lambda candidate made from these particles might well have a small residual polarization since

the proton carries the larger percentage of the Lambda momentum, and thus a fair bit of the spin information.

The following are corrected for resolution.

√
sNN (GeV) PΛuncorrected (%) PΛuncorrected (%)

7.7 1.6% 6.6%
11.5 1.0% 2.3%
14.5 0.6% 0.9%
19.6 0.7% 1.2%
27 0.7% 1.1%
39 0.3% 0.8%

Table 5.2: Uncorrected results for Au+Au 20-50%.
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√
sNN (GeV) PΛnoresidual (%) PΛnoresidual (%) Level of correction Λ Level of correction Λ

7.7 2.4% 8.1% 155.4% 121.8%
11.5 1.5% 2.8% 151.7% 123.8%
14.5 1.2% 1.5% 192.3% 168.7%
19.6 1.0% 1.5% 151.5% 129.1%
27 1.1% 1.5% 153.0% 134.2%
39 0.5% 1.1% 149.2% 135.4%

Table 5.3: Results for Au+Au 20-50% corrected for mass purity without taking into account residual mass
background polarization.

√
sNN (GeV) PΛwithresidual (%) PΛwithresidual (%) Level of correction Λ Level of correction Λ

7.7 2.3% 7.0% 148.5% 106.0%
11.5 1.2% 2.7% 125.0% 116.7%
14.5 0.9% 2.2% 142.2% 245.9%
19.6 0.9% 1.7% 129.0% 138.4%
27 1.0% 1.3% 136.3% 119.9%
39 0.3% 1.2% 95.2% 136.6%

Table 5.4: Results for Au+Au 20-50% corrected for mass purity while taking into account residual mass
background polarization.

√
sNN (GeV) PΛwithresidual /PΛnoresidual PΛwithresidual /PΛnoresidual PΛnoresidual−PΛwithresidual PΛnoresidual−PΛwithresidual

7.7 95.6% 87.0% −0.11% −1.05%
11.5 82.4% 94.3% −0.26% −0.16%
14.5 73.9% 145.8% −0.33% 0.69%
19.6 85.1% 107.2% −0.15% 0.11%
27 89.1% 89.3% −0.12% −0.16%
39 63.8% 100.9% −0.18% 0.01%

Table 5.5: Comparison between residual and non-residual corrections to data.
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There are large statistical error bars associated with scale of the residual background correction. If fact

this difference between considering and not considering the residual effect is well within statistical errors but

we would like to associate a systematic error to our lack of understanding about the correct way of dealing

with this residual effect. We can roughly average over the difference of the ratio of the two scaling methods

to get final systematic errors. 15GeV is a special energy that will have an exception, but the average ratio

not including 15GeV
〈

PΛwithresidual/PΛnoresidual

〉
∼ 0.85 and

〈
PΛwithresidual/PΛnoresidual

〉
∼ 0.95.

√
sNN (GeV) PΛnoresidual (%) PΛnoresidual (%) 0.85PΛnoresidual 0.95PΛnoresidual (%) diff Λ diff Λ

7.7 2.4% 8.1% 2.019% 7.686% 0.4136% 0.4045%
11.5 1.5% 2.8% 1.228% 2.679% 0.2516% 0.1410%
14.5 1.2% 1.5% 1.036% 1.442% 0.2122% 0.0759%
19.6 1.0% 1.5% 0.8466% 1.471% 0.1734% 0.0774%
27 1.1% 1.5% 0.9172% 1.434% 0.1879% 0.0755%
39 0.5% 1.1% 0.4374% 1.083% 0.08959% 0.0570%

Table 5.6: Results for Au+Au 20-50% corrected for mass purity without taking into account residual mass
background polarization. “Diff” is the difference between the first column and the previous relevant column.
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Roughly averaging over the results in table 5.6 we get the following range of systematic errors (upper

and lower)

√
sNN (GeV) Λ Λ up sys Λ down sys Λ Λ up sys Λ down sys

7.7 2.43% 0.00% 0.20% 8.09% 0.00% 1.00%
11.5 1.48% 0.00% 0.20% 2.82% 0.00% 0.15%
14.5 1.25% 0.00% 0.30% 1.52% 0.40% 0.15%
19.6 1.02% 0.00% 0.20% 1.55% 0.00% 0.15%
27 1.11% 0.00% 0.20% 1.51% 0.00% 0.15%
39 0.50% 0.00% 0.20% 1.14% 0.00% 0.15%

Table 5.7: Results for Au+Au 20-50% polarization results corrected for resolution correction and purity
correction as well as systematic error.
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5.3 Scaling errors

As discussed in the beginning of sec. 3 the data is subject to a few scalings: that of αH = 0.647±0.013 – the

decay parameter, that of the resolution correction – as discussed in sec. 4.2.1, and the acceptance correction

A0 – as seen in table 3.1. All of these have associated errors, which are very very small compared to the

statistical error of the measure. The αH is the largest at 2%. These are included as a statement in the paper

about the uncertainty in the scaling.

Additionally given the interplay between helicity efficiency and non-zero polarization (discussed in

sec. 3.5.2) we know (from simple simulation) that we should scale the data by about 7%±3.5%. This error

is a consequence of fig. 3.26.
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5.4 Conservation of momentum effects on event plane resolution

There are possible conservation of momentum effects on the event plane determination. This was studied as

part of the BES v1 paper [45] using MevSim with and without momentum conservation (with the version

used it could be turned off and on) using sub-event planes made by using diffent subsections of the BBC.

This was estimated to be a 2% systematic on the event plane resolution for the BES. We’re using this same

dataset so the results are expected to be the same.
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5.5 Feeddown

There is uncertainty with our estimation of the yields for particles that feeddown into Lambdas. The feed-

down is discussed in detail in section 7. Initially yield discrepancies between UrQMD and THERMUS made

our systematic errors. Now we are using a very explicitly thermal approach. We want to get a sense of how

sensitive to the results are to the specifics of the THERMUS yields.

For this study we will vary the fRs (fractions of Lambdas coming from a given source) for each source

species (primary Lambda (Λ’), Σ0, Ξ0, Ξ−, Σ∗−, Σ∗0, Σ∗+, other) in accordance with the procedure in sec. 7.

Naturally the same is done in parallel for the sources of Λ The variation is going to be from sampling a

Gaussian distribution centered around 0, so

fR = f THERMUS
R (1+TRandom3.Gaus(0,σ)) (5.6)

for some σ where .Gaus(0,σ) is a function of a TRandom3 whereby a Gaussian of width σ centered

around 0 is sampled. Naturally once this has done for all fR on must renormalize them so that they are

fractions again. There is always a finite chance that that fR will be negative. To correct for this i f ( fR ==

0) fR = 0. Such a sampling is done many (107) times to get a statistically significant value and repeated for

different choices of σ. It has been found that the width of the ~ω/kBT or µNB/kBT distributions when fit

by a Gaussian of width ρ are proportional to σ, so that ρN·ω ≈ N ·ρω. This scaling seemed consistent even

to fairly large σ (e.g σ = 0.5) where zeroing out fRs could lead to more asymmetric vortical or magnetic

distributions. The width of these distributions for different values of σ can be seen

The last step is to actually fit what is shown in fig. 5.18 and fig. 5.19. The width of the fit (discussed

above as ρ) is to be the systematic error from feed down for the final results. What is evident from the

aforementioned figures is that the variation falls well within the statistical limits of the measurement, so this

shouldn’t be a dominant error. We have a fair level of trust in THERMUS so we use the ρ found for the

σ= 0.2 curve which we think should include any reasonably different particle production model. This fit can

be seen below, the results of ρ numerically for ~ω/kBT or µNB/kBT as percentages in order of increasing
√

sNN are:

float RhoVorticity[8] = {1.30, 0.19, 0.28, 0.18, 0.14, 0.12, 0.19, 0.18};

float RhoMagnetic[8] = {1.70, 0.29, 0.42, 0.28, 0.23, 0.18, 0.32, 0.29};
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Figure 5.18: Feed down variation away from THERMUS for low
√

sNN with some width σ. Different
widths can be seen in the colors for σ = 0.1, σ = 0.2, and σ = 0.3. The left column depicts ~ω/kBT as√

sNN goes down and the right depicts ~ω/kBT or µNB/kBT (both are as percentages). The rows are, in
descending order, for

√
sNN = 7.7GeV ,

√
sNN = 11.5GeV ,

√
sNN = 14.5GeV , and

√
sNN = 19.6GeV . The

dashed lines represent the statistical errors of the measure for nominal fRs. The y axis shows counts with
the top bin normalized to 1/1.2, while the x axis is vorticity or magnetic field centered about the nominal
measure.
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Figure 5.19: Feed down variation away from THERMUS for high
√

sNN with some width σ. Different
widths can be seen in the colors for σ = 0.1, σ = 0.2, and σ = 0.3. The left column depicts ~ω/kBT as√

sNN goes down and the right depicts ~ω/kBT or µNB/kBT (both are as percentages). The rows are, in
descending order, for

√
sNN = 27GeV ,

√
sNN = 39GeV ,

√
sNN = 62GeV , and

√
sNN = 200GeV . The dashed

lines represent the statistical errors of the measure for nominal fRs. The y axis shows counts with the top
bin normalized to 1/1.2, while the x axis is vorticity or magnetic field centered about the nominal measure.
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Figure 5.20: Gaussian fits (shown in red) of the feed down variation away from THERMUS for low√
sNN with σ = 0.2. The left column depicts ~ω/kBT as

√
sNN goes down and the right depicts ~ω/kBT

or µNB/kBT (both are as percentages). The rows are, in descending order, for
√

sNN = 7.7GeV ,
√

sNN =
11.5GeV ,

√
sNN = 14.5GeV , and

√
sNN = 19.6GeV . The dashed lines represent the statistical errors of the

measure for nominal fRs. The y axis shows counts with the top bin normalized to 1/1.2, while the x axis is
vorticity or magnetic field centered about the nominal measure.
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Figure 5.21: Gaussian fits (shown in red) of the feed down variation away from THERMUS for high√
sNN with σ = 0.2. The left column depicts ~ω/kBT as

√
sNN goes down and the right depicts ~ω/kBT or

µNB/kBT (both are as percentages). The rows are, in descending order, for
√

sNN = 27GeV ,
√

sNN = 39GeV ,√
sNN = 62GeV , and

√
sNN = 200GeV . The dashed lines represent the statistical errors of the measure for

nominal fRs. The y axis shows counts with the top bin normalized to 1/1.2, while the x axis is vorticity or
magnetic field centered about the nominal measure.
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Chapter 6
SIGNAL FALSIFICATION

The purpose of this section is to provide examples of work that was done to attempt to falsify the signal.

6.1 Mass background contribution

As discussed in sec. 3.4 it is expected that the the signal from combinatoric Lambdas is zero, but it might be

possible for some of the signal to leak into the combinatoric Lambdas if the associated proton was from a

real polarized Lambda. We tried a few methods of verifying the expected null signal in the mass background.

The first method is to simply look at the off-mass-peak polarization signal using the nominal cutset. In order

to avoid daughters of real Lambdas to a point we left a gap between the on-peak Lambdas and the considered

off-peak ones. The mass distribution of considered Lambdas is shown in fig. 6.1 (it is identical to fig. 3.10).

Using these Lambdas from the yellow region of fig. 6.1 yields the polarization signals seen in fig. 6.2.

The polarization signal in fig. 6.2 is consistent with zero, but, since the signal itself is so small we’ve tried

to check this a few different ways. For these cross checks I’ll tighten and loosen the nominal topological cuts

described in sec. 4.4.2. For reference, if R = S/B is the ratio of the signal to the background for the BES Λs

R∼ 1.8. If the cuts are tightened tremendously we can check to see if the on-mass-peak signal changes. If

the polarization measure stays the same it is safe to say that the background does not contribute significantly

to the on-peak signal. Of course with much tighter cuts it is not feasible to use the off-mass-peak Lambdas

as any sort of cross check. One such cutset with R∼ 30 (see fig. 6.4) is compared to the data in fig. 6.5 and

fig. 6.6.

The datapoints for the two sets of cuts in fig. 6.5 and fig. 6.6 are very close. Of course the errors are

correlated so it is somewhat difficult to gauge how close they are. Identical polarization measures would
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Figure 6.1: Λ counts as a function of invariant mass. The signal region (1.108GeV < minv < 1.125GeV) is
highlighted in red. The off-mass regions for the cross-check are shown as yellow bands. The region at very
low invariant mass are avoided because of the rapidly changing phasespace.

Figure 6.2: Polarization signal in the off-mass
region using nominal analysis cuts.

Figure 6.3: Polarization signal in the off-mass re-
gion using nominal analysis cuts. This is just a
zoomed in version of fig. 6.2 which only shows the
Λ polarization.
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Figure 6.4: Λ mass distribution for the R∼ 30 cutset.

Figure 6.5: Λ Polarization for two different cut sets.
“Cutset 1” is the collection of nominal cuts with
R∼ 1.8. “Cutset 2” is the collection of nominal cuts
with R∼ 30.

Figure 6.6: Λ Polarization for two different cut sets.
“Cutset 1” is the collection of nominal cuts with R∼
1.8 (for Λs). “Cutset 2” is the collection of nominal
cuts with R∼ 30 (for Λs).
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imply that the on-mass-peak signal is not modified by any apparent signal from combinatoric Lambdas.

In an effort to get around the statistical challenges of the measurement we also tried completely removing

the topological cuts. Naturally this doesn’t address the possibility of the off-mass-peak signal being modified

by the cuts themselves, that is more related to the systematic error considerations of sec. 5.1. In order to

remove any of the correlation from daughters of real Lambdas a harsh condition was instituted whereby if

a Lambda candidate shared a daughter with any other Lambda candidate which was in the nominal mass

range consideration (1.108GeV < minv < 1.125GeV) both candidates where thrown out. This process has

been been given the name “thunderdome” in our group. Before the thunderdome vetting was applied the

no-cut cutset had R∼ 0.03. The off-peak distribution is shown in fig. 6.7.

Figure 6.7: Λ mass distribution for the off-mass region when no topological cuts are applied.

Clearly the thunderdome off-mass-peak results are null. Overall every cross-check we’ve performed

via cut variation and off-mass-peak combinatoric Lambdas follow the expectation that there should be no

polarization signal for purely combinatoric Lambdas and that any residual signal which could come from

proton daughters does not significantly impact the polarization measure.
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Figure 6.8: Λ Polarization results for the off-mass-
peak thunderdome compared to nominal on-mass-
peak polarization results.

Figure 6.9: Λ Polarization results for the off-mass-
peak thunderdome compared to nominal on-mass-
peak polarization results.

6.2 Simulation comparison

Typically a natural place to look to verify or falsify an experimental signal are the many models that exist.

No available simulation (at least as far as I am aware) has vorticity or spin coupling so simulation can, at

best, be used for falsifying the results and attempting to see if one sees the signal appear as a consequence of

acceptance or kinematics. Since the analysis is so simple it is unlikely that such a falsification could occur.

The tools available I have used in this analysis are HIJING, embedded Lambdas in real events, and UrQMD.

Since HIJING simulations in the STAR framework have included a cut such that primary particles have

−4.5 < η < 2.5 it isn’t really possible to use the BBC and thus it is not possible to make any attempt at

falsifying the results, aside from assuming that Ψ1 is zero or random for every event. Because of the η cut

many of the particles reaching the BBCs are secondary and thus there can be a large auto correlation effect

with daughters of Lambdas and the “measured” Ψ1. Assuming that Ψ1 = 0 (the default) for every event

gives a result that falls right on zero, namely −0.002±0.15

Embedding data is very statistically challenged. Since the Lambdas in embedding aren’t polarized and
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are not made to have any correlation with Ψ1 they can’t give a number more sensitive than other simulation

results.

UrQMD (in which the reaction plane is known) for 19.6GeV has given PH = 1.95−4± 2.95−4 which

means Nσ = 0.66. For UrQMD data I am given a list of Lambdas and I have to decay them myself. I give

them an isotropic decay geometry so it is hardly a surprise that the results fall on zero. I do not have UrQMD

tracks run through the GEANT model of STAR so I can only analyze the data as similarly to real data up to

a point.

6.3 Rotated pions

Another way to try to falsify the signal is the run the same code but rotate all of the pions in the event by π

in the x− y plane. This should provide realistic Lambda candidates without providing any residual effects

from real Lambdas leaking in. There should be a null signal in this measure. The following results are for

resolution corrected polarization (sin(Ψ1−φ∗
Λ
)) with no scaling by 8/(πα).

Figure 6.10: sin(Ψ1−φ∗
Λ
) as a function of

√
sNN for Λ and Λ where the momenta of the pions in the events

have been rotated 180 degrees in azimuth.
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Figure 6.11: sin(Ψ1−φ∗
Λ
) as a function of

√
sNN for Λ candidates that have large or small invariant mass -

also referred to as off mass (both cases of minv > mΛ and minv < mΛ) - where the momenta of the pions in
the events have been rotated 180 degrees in azimuth.

Figure 6.12: sin(Ψ1−φ∗
Λ
) as a function of

√
sNN for Λ candidates that have large or small invariant mass -

also referred to as off mass (both cases of minv > mΛ and minv < mΛ) - where the momenta of the pions in
the events have been rotated 180 degrees in azimuth.
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6.4 Random event plane

The final trivial cross-check is to see if the results are consistent with zero if the event plane in a real event

is taken randomly from a flat 0−2π distribution. This can only really serve as a code check. The results are

in fig. 6.13.

Figure 6.13: Polarization for a Ψ1 randomly chosen from a flat distribution between 0−2π.
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Chapter 7
POLARIZATION AS VORTIMETER AND

MAGNETOMETER

As described in sec. 2 hyperon polarization is a consequence of net vorticity, which itself is a consequence

of a net angular momentum deposited into the system in the early stages of the collision. Thus the positive

Λ and Λ polarization in fig. 7.6 indicates a positive vorticity in the system.

 (GeV)NNs
10 210

 (
%

)
H

P

0

2

4

6

8
Au+Au 20-50%

 this studyΛ

 this studyΛ

 PRC76 024915 (2007)Λ

 PRC76 024915 (2007)Λ

Figure 7.1:
〈

8
πα

sin
(

Ψ1−φ∗
Λ,Λ̄

)〉
vs.
√

sNN for 20-50% centrality [1]. PH characterizes the global correla-

tion between Λ (Λ) net spin and system angular momentum. Also seen in fig. 2.2.
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Figure 7.2: Cartoon of a heavy-ion collision.

Interestingly one may noticed that the Λ polarization is consistently, though not statistically, larger than

the Λ polarization for all energies. It has been noted that positive baryochemical potential could make

it more difficult for the medium to polarize particles than anti-particles due to Pauli blocking [46, 34].

Another possible source for asymmetry in the Λ and Λ polarization is magnetic coupling. The projectile

and target spectators (as depicted in fig. 7.2) quickly moving charged objects which create a large rapidly

changing magnetic field at midrapidity. The magnetic field points in the same direction (on average) as the

angular momentum of the system. It’s not known whether or not such a magnetic field would be sufficiently

long lived to effect a polarization on final state hadrons via hadron magnetic moments. In principal, the

constituent quarks of the QGP may themselves be polarized in such a way. Since anti-particles have opposite

magnetic moments to particles, spin coupling to magnetic field would cause a splitting. The Λ magnetic

moment is negative and thus one would expect the polarization due to a magnetic field on primary Λs to be

negative and the polarization due to the magnetic field on primary Λs to be positive and of equal magnitude

(assuming equal freeze-out times).

In this section the goal is to describe a simplistic way to get to the vorticity and magnetic field given

measurements of particle and anti-particle global polarization. It is possible to make such a connection

under the assumption of local thermodynamic equilibrium. Such an assumption is by no means exotic and

is made in all of the hydrodynamic calculations discussed in sec. 2. Furthermore the same procedure has

been used in calculations which do not explicitly require such an equilibrium [40, 41]. This discussion will
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closely track, with less detail, a paper we’ve published on the subject [2].

Consider an equilibrated non-relativistic particle in a fluid cell rotating with angular velocity ωωω inside a

thermal bath of temperature T acted upon by a constant magnetic field BBB. To find the spin of such a particle

we can start with the density operator ρ̂, which can be described in terms of a partition function Z, some

conserved charge Q̂ with corresponding chemical potential ν (an example of such a charge would be baryon

number with its corresponding baryochemical potential)

ρ̂ =
1
Z

exp
[
−Ĥ/T +νQ̂/T +ωωω · ĴJJ/T + µ̂µµ ·BBB/T

]
=

1
Z

exp
[
−Ĥ/T +νQ̂/T +ωωω ·

(
L̂LL+ ŜSS

)
/T + µ̂µµ ·BBB/T

]
.

(7.1)

In the above equation the S denotes the particle spin and µ denoted its intrinsic magnetic moment. If

the angular velocity is parallel to the magnetic field (as is expected) ρ̂ can be diagonalized in the basis of

eigenvectors of particle spin pointing along this direction. The probability, w, of getting a particle with some

spin projection m is

w[T,B,ω](m) =
exp
[

µB/S+ω

T m
]

∑
S
m=−S exp

[
µB/S+ω

T m
] . (7.2)

In the case of the data we can conclude that the polarization is small (of order a few percent). In which

case we can expand the exponential and the spin is can be estimated by

SSS' S(S+1)
3

ωωω+µBBB/S
T

. (7.3)

Of course, in heavy-ion collisions one ought to take into account quantum mechanics so a Boltzmann

statistical approach isn’t generally correct. A generalization proceeds with a Wigner function and the spin

tensor to describe the local polarization of emitted particles. I’ll leave the details to [2]. Again using the

small polarization the spin can be expressed analogous to eq. 7.3, this time using the thermal vorticity ϖ

(defined in eq. 2.1) and magnetic field (both as axial vectors in the particle co-moving frame)

Sν(x, p)' S(S+1)
3

(
ϖ

ν
c +

µ
S

Bν
c

)
. (7.4)

Looking at eq. 7.4 it’s clear that the polarization of a particle/anti-particle pair would differ only in
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the second term due to the sign of µ. In principal this means that by measuring the polarization of any

particle/anti-particle (say Λ/Λ) one can, with fairly modest assumptions, measure the fluid vorticity (which

is quite a fundamental property of the fluid) and the magnetic field (which is of fundamental interest to the

field). I’ll expand a bit more more on the context of these observables in sec. 7.6.

Unfortunately, there is a complication when it comes to the actual measurements. The calculation is

made for particles emitted directly from the fireball (primary particles). In an experimental context there is

no way of guaranteeing that a given particle is primary. In actual fact only about a quarter of all measured

Lambdas are primary. The rest come from a zoo of heavier particles primarily Σ0, Σ∗, and Ξ. Most are spin

1/2 (with the notable exception of the Σ∗s) so they’re expected to have the same coupling with the vorticity,

however the magnetic moments of all of these particles can be quite different. Aside from this, in any decay

scenario the daughter Lambda does not carry away the spin of its parent. The fraction (and sign) of the

spin that the daughter Lambda carries away can be worked out, but they must be done for every resonance.

Correcting the results for the effects due to the parents of a particle of interest is commonly referred to as a

feed-down correction. Much of the rest of this section will describe how this correction can be made for the

Λ/Λ system and show results with particle yields taken from the THERMUS model.

7.1 Feed-down procedure for Lambdas

As mentioned previously the most important decays to consider are the following: the strong decays of the

form Σ∗ → Λ+ π, the electromagnetic decays of the form Σ0 → Λ+ γ, and the weak decays of the form

Ξ→ Λ+ π. This formalism will not consider any higher mass states. The reason for this restriction is

essentially that these particles (along with primary Lambdas) make up the great majority of the sources for

Lambdas seen in a collision. This is discussed in more detail in sec. 7.2.2.

In principal the transfer of spin of a parent to a daughter depends on the daughter momentum in the rest

frame of the parent. In two body decays conservation laws may constrain that momentum which allows for

simple Clebsch-Gordan calculations. In either case one can calculate the average spin transfer taking the

momentum dependence into account, which will be denoted C. Tab 7.1 is a table of the transfer factors.

Many resonances (including the Σ∗ resonances) can decay either directly into a Λ or a Σ0 which, in turn,

decays into a Λ itself. Because of this we consider the Σ0 as a special case. For some decay of a particle R
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Decay C
parity-conserving: 1

2
+→ 1

2
+ 0− −1/3

parity-conserving: 1
2
−→ 1

2
+ 0− 1

parity-conserving: 3
2
+→ 1

2
+ 0− 1/3

parity-conserving: 3
2
−→ 1

2
+ 0− −1/5

Ξ0→ Λ+π0 +0.900
Ξ−→ Λ+π− +0.927

Σ0→ Λ+ γ -1/3

Table 7.1: Polarization transfer factors C for important decays X → Λ(Σ)

of the form R→ Λ (R→ Σ0→ Λ) let fΛR ( fΣ0R) be the branching ratio of the Λ channel and CΛR (CΣ0R) be

the spin transfer factors as described before. In this case the measured Λ spin can be written in terms of the

parent spin as

S∗,meas
Λ

= ∑
R

[
fΛRCΛR− 1

3 fΣ0RCΣ0R
]

S∗R. (7.5)

Note that the−1/3 in the second term is coming from the CΛΣ0 from tab. 7.1. Ultimately we’re interested

in the polarization. For the spin 1/2 particles there are only two possible spin projections on a given axis so

the meaning of polarization is more obvious, but for the spin 3/2 states (e.g. the Σ∗s) this needs to be made

explicit. The mean spin vector can be expressed in terms of the mean density operator and the spin operator

ŜSS

〈ŜSS〉= tr
(

ρ̂ ŜSS
)
. (7.6)

The polarization is thus the average spin of a particle scaled by its total spin to normalize it to 1

P = ŜSS/S. (7.7)

Using this definition it is possible to rewrite eq. 7.5 in terms of the polarization

Pmeas
Λ = 2∑

R

[
fΛRCΛR− 1

3 fΣ0RCΣ0R
]

SRPR. (7.8)

Thus from eq. 7.8 and eq. 7.4 we can make a 2×2 matrix to relate measured Λ and Λ polarization to the
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magnetic field and thermal vorticity.


ϖc

Bc/T

=


2
3 ∑

R

(
fΛR CΛR− 1

3 f
Σ0R C

Σ0R
)

SR(SR +1) 2
3 ∑

R

(
fΛR CΛR− 1

3 f
Σ0R C

Σ0R
)
(SR +1)µR

2
3 ∑

R

(
f
ΛR C

ΛR−
1
3 f

Σ
0R

C
Σ

0R

)
SR(SR +1) 2

3 ∑
R

(
f
ΛR C

ΛR−
1
3 f

Σ
0R

C
Σ

0R

)
(SR +1)µR



−1
Pmeas

Λ

Pmeas
Λ

 . (7.9)

Here, fΛR ( f
ΛR) is the fraction of measured Λs (Λs) that arise from the direct decay of a baryon R→

Λ+X (R→ Λ+X). Similarly, fΣ0R ( f
Σ0R) is the fraction of measured Λs (Λs) that arise from the direct

decay R→ Σ0 +X → Λ+ γ+X (R→ Σ0 +X → Λ+ γ+X). (Note carefully the last sentence: fΣ0R does not

give the fraction of Sigmas coming from parent R, but the fraction of Lambdas coming from (grand)parent

R.) The branching ratio for Σ0→ Λ+ γ is essentially 100%.

The constants C are the spin transfer coefficients, listed in table 7.1, and SR and µR are the spin and

magnetic moment of particle R. For the antibaryons, SR = SR, CXY = CXY , and µR = −µR. The sums in

equation 7.9 are understood to include the contributions of primary Λs and Σ0s, too.

The magnetic moments of the particles and the branching ratios for the decays are given in tab. 7.2. The

branching ratios will be important when we estimate the yields in later sections as it modifies the effective

yield of Lambda parent.

index i particle JP µ (µN) BR→ Λ+X BR→ Σ0 +X
0 Λ′ 1

2
+ -0.613 [47] (100%) -

1 Σ0 1
2
+ +0.79 (quark model [47]) 100% -

2 Ξ− 1
2
+ -0.651 [47] 100% 0

3 Ξ0 1
2
+ -1.25 [47] 100% 0

4 Σ∗− 3
2
+ -2.41 [48] 87% 7%

5 Σ∗0 3
2
+ +0.30 [48] 87% 1%

6 Σ∗+ 3
2
+ +3.02 [48] 87% 7%

Table 7.2: Particles that may feed down to our Λ sample. Λ′ refers to primary Λs. The index, i, is used in
the computer code implementation of this calculation; it is included just for reference. Magnetic moments,
µ, are given in units of the nuclear magneton, µN ≡ e~

2mproton
. Branching ratios to Λ and Σ0 baryons are needed

to calculate f factors in equation 7.9.
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7.2 Particle yields for feed-down correction

The only ingredients we’re missing in eq. 7.9 is the relative yield fractions. For these we need some model

to estimate the yields. THERMUS [49] is a C++ package that estimates particle yields given a set of

parameters. The package is capable of drawing from a few different distributions. In this calculation the

Grand-Canonical Ensemble (GCE) was used which conserves baryon number, strangeness, and electric

charge. The inputs of the model are the temperature (T ), system volume (V ), chemical potentials (µi) for

conserved charges, and a phenomenological parameter (γS) which accounts for incomplete equilibration in

the strangeness sector. THERMUS provides particle yields, but it doesn’t describe the dynamics of a full

collision. It may seem strange initially that µS 6= 0, but net strangeness is allowed to be nonzero in given

rapidity windows, and is found to be nonzero in real detector acceptance. The same is true for baryon

number and charge, though a real physical process (baryon stopping) also provide a significant deviation

from zero in integrated phasespace. The GCE partition function is given by

Zi (T,V,µi) = tr
[
e−(Ĥ−µiN̂i)/T

]
. (7.10)

The γS parameter comes into play as a multiplicative factor γS
S on the Boltzmann factor for any hadron

of strangeness S

THERMUS was run by Bill Llope using parameters from from Sabita Das’ thesis [50] (It can be found

most easily on the STAR drupal page https://drupal.star.bnl.gov/STAR/system/files/Thesis_

SabitaDas_26thOct.pdf). Quantities of interest are enumerated in “Table 4.4: Freeze-out parameters

obtained from yields in GCE and(µQ = 0).” Like Sabita, the parameter µQ = 0 and the system volume is a

hard sphere with radius based of nuclear parameters and overlap size. Naturally numbers were chosen to

match the 20-50% of the analysis. Sabita uses THERMUS for the STAR results so it is not a surprise that

they match.

Lambda’s coming from some higher mass state have a different decay topology from primary Lambdas.

This could effect how efficiently our detector finds such Lambdas. This is discussed in the next section.

Ultimately The effects were found to be so small that the efficiencies are ignored. There is no serious

variation of the results from slight relative yield changes.
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Figure 7.3: Input numbers for THERMUS simulation

Figure 7.4: Output particle ratios for THERMUS simulation, unfortunately these do not include Σ∗ baryons.
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Figure 7.5: Contributions to Λ multiplicity for different
√

sNN. All higher resonances and mass states (in-
cluding the Ω) are grouped together in the “other” category. Clearly there is not a strong

√
sNN dependence

on the percentages.

7.2.1 HIJING efficiency

Since the Σ0 decay is electromagnetic the Λ daughter has basically the same decay kinematics as a primary

Λ. On the other hand, weak decays like the Ξ−, Ξ0, and the Ω0 have lifetimes similar to the Λ. Because

of this the apparent decay length of the Λ which is a daughter of one of these multi-strange particles is

longer than average decay length of actual primary Λ. Similarly such a secondary Λ would have a larger

reconstructed DCA and (generally) larger DCA of each secondary Λ daughter to the primary vertex. In order

to account for this effect we used HIJING data and compared the efficiency of the multi-strange hadrons to

the efficiency of the Lambdas. This relative efficiency was used because the yields we got from UrQMD

and THERMUS are with respect to Lambdas. Quoting the yields this way somewhat mitigates the tendency

for models like UrQMD to underestimate strangeness.

In order to get the efficiency for reconstructing a Ξ− relative to reconstructing a primary Λ we first

get a Ξ− efficiency. This is accomplished by dividing the number of MC Ξ− tracks in the HIJING by the

number of HIJING Ξ−s that are associated via the association maker and pass our normal reconstruction

cuts. This quantity is then divided by the same thing (# pure MC tracks/# reconstructed Λ) for primary

Λs. The corollary is done for anti-particles (that is efficiency is quoted with respect to the Λ). All such

efficiencies were calculated with STAR production HIJING events at 19GeV. It is assumed that it should not
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vary significantly for different values of
√

sNN. These final efficiencies can then be multiplied by the yields

of Ξ− per Λ that we have for the UrQMD and THERMUS.

Particle relative efficiency
Ξ− 1.12728
Ξ0 1.01695
Ω0 0.97769
Ξ
+ 1.09458

Ξ
0 1.00359

Ω0 1.00907

Table 7.3: Relative efficiency [(# Multi-strange particle passing cuts)/(# Multi-strange particle simu-
lated)]/[(# primary Lambda passing cuts)/(# primary Lambda simulated)]

These numbers are all close enough to 1 for us to feel comfortable ignoring such an effect.

7.2.2 Which particles are included?

As can be seen in fig. 7.5 only about 15% of the Lambdas come from the “other” category, which represents

a tremendous number of particles. These include things like Λ(1405) and Λ(1530) and the Ω. In fact, the

higher mass Lambdas that I mention each contribute about 1% of the yield. Others contribute less.

This 15% we will consider as unpolarized. If there were no magnetic field, but only vorticity-induced

polarization, we [2] have checked that the alternating signs of the spin transfer coefficients C effectively

make all their contributions cancel each other out; so, our assumption of (effective) zero polarization is

justified. To definitively say what would happen if there is a magnetic field, we would have to know the

magnetic moments of these contributors, and they are not measured. It is very reasonable to assume, how-

ever, that, as in the vortical case, they would effectively cancel each other out. In any event, these “other”

parents are assumed to be a zero-polarization component to the measured Λs. Hence, they suppress the

signal by “diluting” it by ∼ 15%.

The relevant values of fΛR, f
ΛR, fΣ0R, and f

Σ
0R

, using the THERMUS yields, are given in table 7.4.
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7.3 Feed-down matrix elements

Now that we have the full yield ratios as discussed in sec. 7.1 they can be listed in tab. 7.4.

f 7.7 GeV 11.5 GeV 14.5 GeV 19.6 GeV 27 GeV 39 GeV 62.4 GeV 200 GeV
fΛ′ 2.800e-01 2.492e-01 2.418e-01 2.350e-01 2.313e-01 2.273e-01 2.239e-01 2.183e-01
fΛΣ0 1.806e-01 1.666e-01 1.627e-01 1.591e-01 1.569e-01 1.547e-01 1.524e-01 1.493e-01
fΛΣ∗+ 1.044e-01 1.052e-01 1.045e-01 1.037e-01 1.027e-01 1.022e-01 1.007e-01 9.984e-02
fΛΣ∗0 1.039e-01 1.047e-01 1.040e-01 1.032e-01 1.023e-01 1.017e-01 1.002e-01 9.938e-02
fΛΣ∗− 1.018e-01 1.028e-01 1.020e-01 1.013e-01 1.004e-01 9.987e-02 9.840e-02 9.763e-02
fΛΞ0 4.056e-02 4.992e-02 5.438e-02 5.842e-02 6.208e-02 6.464e-02 6.970e-02 7.308e-02
fΛΞ− 3.906e-02 4.822e-02 5.256e-02 5.649e-02 6.004e-02 6.254e-02 6.743e-02 7.073e-02
fΣ0Σ∗+ 8.402e-03 8.466e-03 8.405e-03 8.343e-03 8.267e-03 8.220e-03 8.099e-03 8.033e-03
fΣ0Σ∗0 1.194e-03 1.204e-03 1.195e-03 1.186e-03 1.175e-03 1.169e-03 1.152e-03 1.142e-03
fΣ0Σ∗− 8.188e-03 8.268e-03 8.211e-03 8.154e-03 8.080e-03 8.036e-03 7.917e-03 7.855e-03
fΛ,other 1.319e-01 1.555e-01 1.602e-01 1.650e-01 1.667e-01 1.696e-01 1.701e-01 1.746e-01
f

Λ
′ 2.327e-01 2.192e-01 2.162e-01 2.143e-01 2.153e-01 2.144e-01 2.175e-01 2.159e-01

f
ΛΣ

0 1.502e-01 1.465e-01 1.455e-01 1.451e-01 1.461e-01 1.459e-01 1.480e-01 1.477e-01
f

ΛΣ
∗− 8.681e-02 9.254e-02 9.341e-02 9.454e-02 9.567e-02 9.638e-02 9.774e-02 9.871e-02

f
ΛΣ
∗0 8.636e-02 9.210e-02 9.297e-02 9.409e-02 9.522e-02 9.593e-02 9.729e-02 9.826e-02

f
ΛΣ
∗+ 8.461e-02 9.037e-02 9.126e-02 9.239e-02 9.350e-02 9.421e-02 9.555e-02 9.652e-02

f
ΛΞ

0 1.071e-01 9.659e-02 9.200e-02 8.909e-02 8.565e-02 8.373e-02 7.931e-02 7.675e-02
f

ΛΞ
+ 1.031e-01 9.329e-02 8.892e-02 8.614e-02 8.283e-02 8.100e-02 7.672e-02 7.428e-02

f
Σ

0
Σ
∗− 6.985e-03 7.446e-03 7.516e-03 7.606e-03 7.697e-03 7.754e-03 7.864e-03 7.942e-03

f
Σ

0
Σ
∗0 9.926e-04 1.059e-03 1.069e-03 1.082e-03 1.094e-03 1.103e-03 1.118e-03 1.129e-03

f
Σ

0
Σ
∗+ 6.807e-03 7.271e-03 7.343e-03 7.433e-03 7.523e-03 7.580e-03 7.688e-03 7.766e-03

f
Λ,other 1.344e-01 1.536e-01 1.637e-01 1.683e-01 1.694e-01 1.719e-01 1.713e-01 1.751e-01

Table 7.4: f ’s from THERMUS.

The numbers in tab. 7.4 may be plugged into eq. 7.9, to get the matrix elements listed in table 7.5. To be

very clear, these are the matrix elements of the inverted matrix. In other words, to get the physical quantities

of interest, use equation 7.11, below, with the values of a,b,c,d from table 7.5.

 ϖc

Bc/T

=

 a b

c d


 Pmeas

Λ

Pmeas
Λ

 . (7.11)
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f 7.7 GeV 11.5 GeV 14.5 GeV 19.6 GeV 27 GeV 39 GeV 62.4 GeV 200 GeV
a 1.4601 1.4260 1.4038 1.3856 1.3635 1.3512 1.3195 1.3029
b 1.0462 1.0930 1.1274 1.1513 1.1752 1.1913 1.2230 1.2456
c -1.7853 -1.9134 -1.9357 -1.9539 -1.9616 -1.9722 -1.9709 -1.9877
d 1.7928 1.9162 1.9503 1.9676 1.9726 1.9817 1.9757 1.9898

Table 7.5: The matrix elements of the INVERTED matrix. Multiply this by the polarization “vector” as per
equation 7.11.

7.4 Application to STAR data

The STAR measurements on hyperon polarization are listed in table 7.6. Applying equation 7.11 with the

matrix elements listed in table 7.5 yields the physical parameters, listed in table 7.7.

In table 7.8 are listed the physical parameters if feed-down is neglected. This is obviously for comparison

only. In this case, fΛ′ = f
Λ
′ = 1 and all other f s are zero, so that for every energy, the matrix is

 a b

c d


no feed−down

=

 0.5 −0.613

0.5 0.613


−1

=

 1 1

−0.8157 +0.8157

 (7.12)

Comparing tables 7.7 and 7.8 shows that accounting for feed-down increases ϖ by∼ 20%, and increases

B by a factor of 2.

About units As is common, we have been using units such that ~ = c = kB = 1. Furthermore, we’ve

used µN = 1. In this case, ϖc = ωc/T and B/T are both dimensionless. That’s why they are quantified in

percentages in the second and third columns of tables 7.7 and 7.8.

In human units, vorticity is measured in s−1 (usually not written as Hz) and B in Tesla. In order to get to

these units, we will need to assume a temperature. Here, we will assume kBT = 160 MeV.

The conversions are

ω [in s−1] = (kBT ) ·
(

ω

T
[dimensionless]

)
/~ (7.13)

B [in Tesla] = (kBT ) ·
(

B
T

[dimensionless]
)
/µN (7.14)

Explicitly, ~= 6.58×10−22 MeV · s and µN = 3.15×10−14 MeV/Tesla.

(To make the connection to equation 7.9, the 2
3 in front of everything is basically 1/(SΛ +1). The units
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of this cancel with the (SR +1) factor found inside of every sum. That leaves SR in the left columns; this

is the spin of particle R. In our matrix, we have been using, e.g. SΣ∗ =
3
2 , when in reality it is SΣ∗ =

3
2~.

Likewise, in our matrix, we have been using, e.g. µΣ∗+ =+3.02, when in reality it is µΣ∗+ =+3.02µN .)

√
sNN (GeV) PΛ (%) P

Λ
(%)

7.7 2.27 +/- 0.63 7.56 +/- 3.61
11.5 1.38 +/- 0.40 2.63 +/- 1.27
14.5 1.17 +/- 0.49 1.42 +/- 1.31
19.6 0.96 +/- 0.31 1.45 +/- 0.61
27.0 1.03 +/- 0.28 1.41 +/- 0.47
39.0 0.49 +/- 0.42 1.06 +/- 0.61
62.4 1.25 +/- 1.09 1.60 +/- 1.49
200.0 0.12 +/- 0.95 -0.73 +/- 1.08

Table 7.6: STAR measurements on polarization for 20-50% centrality Au+Au collisions.

√
sNN (GeV) ϖc (%) B/T (%) ω (s−1) B (Tesla)

7.7 11.23 +/- 3.89 9.49 +/- 6.58 2.7e+22 +/- 9.5e+21 4.8e+14 +/- 3.3e+14
11.5 4.85 +/- 1.50 2.40 +/- 2.55 1.2e+22 +/- 3.7e+21 1.2e+14 +/- 1.3e+14
14.5 3.24 +/- 1.63 0.51 +/- 2.73 7.9e+21 +/- 4.0e+21 2.6e+13 +/- 1.4e+14
19.6 2.99 +/- 0.82 0.98 +/- 1.34 7.3e+21 +/- 2.0e+21 5.0e+13 +/- 6.8e+13
27.0 3.06 +/- 0.68 0.76 +/- 1.09 7.5e+21 +/- 1.6e+21 3.8e+13 +/- 5.5e+13
39.0 1.93 +/- 0.93 1.13 +/- 1.48 4.7e+21 +/- 2.3e+21 5.8e+13 +/- 7.5e+13
62.4 3.60 +/- 2.32 0.70 +/- 3.64 8.8e+21 +/- 5.6e+21 3.6e+13 +/- 1.8e+14
200.0 -0.75 +/- 1.83 -1.68 +/- 2.86 -1.8e+21 +/- 4.4e+21 -8.5e+13 +/- 1.5e+14

Table 7.7: The vorticities and magnetic fields extracted from STAR polarization data, using equation 7.11
and the matrix elements from table 7.5.

The figures for this data in various units are also included.

The vorticity is relatively insensitive to the particle yield. The scale of the magnetic field is quite sensitive

to the yield of Σ∗ baryons due to their very large magnetic moments. This mostly affects the scale of the

measurement and does not change the sign or otherwise have much effect on the relative number of standard

deviations from 0.
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Figure 7.6: Measured vorticity and B field in % corrected for feed-down. µN is the nuclear magneton. There
is a clear vortical signal, but only a hint of a magnetic field as anticipated.
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Figure 7.8: Measured vorticity in units of fm−1.
The temperature is taken to be 160MeV. The tem-
perature is merely a scaling of the data so it is triv-
ial to change it. It does not effect the significance of
the datapoints.
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Figure 7.9: Measured magnetic field in units of Tesla. The temperature is taken to be 160MeV. The tem-
perature is merely a scaling of the data so it is trivial to change it. It does not effect the significance of the
datapoints.
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√
sNN (GeV) ϖc (%) B/T (%) ω (s−1) B (Tesla)

7.7 9.83 +/- 3.67 4.31 +/- 2.99 2.4e+22 +/- 8.9e+21 2.2e+14 +/- 1.5e+14
11.5 4.02 +/- 1.33 1.02 +/- 1.09 9.8e+21 +/- 3.2e+21 5.2e+13 +/- 5.5e+13
14.5 2.58 +/- 1.40 0.21 +/- 1.14 6.3e+21 +/- 3.4e+21 1.0e+13 +/- 5.8e+13
19.6 2.40 +/- 0.68 0.40 +/- 0.56 5.8e+21 +/- 1.7e+21 2.0e+13 +/- 2.8e+13
27.0 2.44 +/- 0.55 0.31 +/- 0.45 5.9e+21 +/- 1.3e+21 1.6e+13 +/- 2.3e+13
39.0 1.55 +/- 0.75 0.46 +/- 0.61 3.8e+21 +/- 1.8e+21 2.4e+13 +/- 3.1e+13
62.4 2.85 +/- 1.84 0.29 +/- 1.50 6.9e+21 +/- 4.5e+21 1.5e+13 +/- 7.6e+13
200.0 -0.61 +/- 1.44 -0.69 +/- 1.17 -1.5e+21 +/- 3.5e+21 -3.5e+13 +/- 6.0e+13

Table 7.8: The vorticities and magnetic fields extracted from STAR polarization data, using equation 7.11
but a matrix that ignores feed-down, i.e. fΛ′ = f

Λ
′ = 1 and all other f s are zero. The matrix used is given in

equation 7.12. See text for details.

7.5 Vorticity and magnetic field: theory comparison

Several theory comparisons where made to the polarization data in sec. 2. Since the polarization signal

seems to come entirely from the vorticity of system, it should be no surprise that the vorticity matches

model results quite well. Many theory models tend to have polarization on the scale of a few hundredths of

a fm−1. Two such results from models are shown in fig. 7.10 and fig. 7.11.

Figure 7.10: Vorticity in an AMPT calculation for different impact parameters as a function of time [39].
The scale of a few hundredths of a fm−1 matches the data quite well.
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Figure 7.11: Vorticity in a PICR hydrodynamic calculation at NICA energies [25]. We get a similar scale
of vorticity in our analysis.

None of the models references in sec. 2 involve any sort of magnetic field calculation. There are magne-

tohydrodynamic efforts underway in the field, but these do not included calculations of hyperon polarization.

The magnetic field itself is pretty poorly constrained at present. Any understanding that does exist is entirely

theoretical as there is no direct measurement possible. A subtlety which has been glossed over is that it isn’t

at all obvious what magnetic field could primarily effect a polarization. The Lambdas themselves are emit-

ted quite late in the collision and the magnetic field is expected to be short lived. Perhaps a measurement

of the magnetic field through polarization would be some late-time averaged magnetic field, or perhaps the

polarization occurs on the constituent quark level while they’re still part of the QGP. Since the QGP itself

is charged it is expected to have a finite conductivity and thus display a Lenz’s law interaction which would

work to slow the decay of the magnetic field over time. This might have a significant effect on the magnetic

field as a feasible measure in to polarization observables. A calculation including a conductivity from a

lattice QCD calculation is shown in fig. 7.12.

In fig. 7.12 the field is given in terms of the pion mass, which is a typical (though initially confusing)

way of quoting field strength. A field of 1014Tesla (which is more or less the scale seen in the data in fig. 7.9)

would be ∼ 1m2
π. Since the calculation in fig. 7.12 is done at 200GeV one would expect the magnetic field

to peak at a lower value in the BES, however the medium is be more charged, due to baryon stopping, in

the BES which could increase the conductivity. At any rate the data is far too uncertain to reach any clear

conclusions. At this point we will have to be satisfied with noting that the sign of the datapoints in fig. 7.9

is as expected and the scale is a little on the high side, but on a nearly correct scale.
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Figure 7.12: A calcualtion of magnetic field over time and how it is modified by the conductivity of the QGP
at top RHIC energy [51]. The conductivity is taken from a lattice QCD calculation and slows the decay of
the field. Also dislayed are arbitrary multiples of the conductivity.

7.6 Chiral effects

Aside from being of fundamental interest the values of the vorticity and magnetic field are of great relevance

to chiral measurements. It isn’t my intention to go into detail on the quite complicated subjects of the Chiral

Magnetic Effect (CME) or the Chiral Vortical Effect (CVE), since these are beyond the work of this thesis.

I simply want to provide a glimpse into the context in which this measurement has been made. Interested

readers looking for a review article may wish to read [52].

The Lagrangian of the strong nuclear force does not explicitly break CP (that is, charge and parity)

symmetry, but no violations are known to exist. This lack of known violations is quite famous and is

regularly referred to as the “strong CP problem”. Since the strong force doesn’t conserve chirality it is

possible for any QGP to have large fluctuations in chirality. The size of these fluctuations, which is related to

the Chern-Simons number, has almost no theoretical or experimental constraint at present. Such a fluctuation

into net-chirality is known as the chiral anomaly. Furthermore, as mentioned earlier in this section, heavy-
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ion collisions are both highly vorticus and are acted on by a strong magnetic field.

In the presence of a magnetic field quark spins align or anti-align (depending on their charge) with the

field due to their intrinsic magnetic moment. If a chirality imbalance is also in place the magnetic field

will induce an electric charge current, ~Je, along the direction it points. Reminiscent of a conductivity this

constant of the linear relation between the magnetic field and the induced current is the “chiral magnetic

conductivity”, σ5. The relation is

~Je = σ5~B

=
Qµ5

2π2
~B

(7.15)

where σ5 has been expanded in the second term in terms of the charge, Q, and the axial chemical

potential, µ5. µ5 is proportional to the difference of the number of right-handed and left-handed quarks. The

effect is called the CME. A schematic is shown in fig. 7.13.

Figure 7.13: This illustration of the CME [52] is for a single type of massless, positively-charged quark in
an event with µ5 > 0. The left panel demonstrates a magnetic field with µ5 = 0, the middle panel depicts
µ5 > 0 and ~B = 0, and the right panel depicts µ5 > 0 and ~B 6= 0. Including a negative anti-particle would
create negative particles moving downwards, which would contribute equally to the electric current.

The CVE is completely analogous, except it is typically measured via net baryon number coupling to
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vorticity.

~Jv =
µ5µB

π2
~ω (7.16)

Figure 7.14: This illustration of the CVE [52] is for a set of massless quark/anti-quark pair in an event with
both µ5 6= 0 and µB 6= 0 with ~ω 6= 0. The left panel demonstrates a vorticity with µ5 = 0, the middle panel
depicts µ5 6= 0, µB 6= 0, and ~ω = 0, and the right panel depicts µ5 > 0, µB 6= 0, and ~ω = 0.

Both the CME and CVE are difficult measurements to make, primarily because the signal is small and

the background is large and difficult to constrain. The description of both phenomena also necessarily

includes a µ5 term which is very poorly constrained theoretically. To put both types of measurement on firm

ground it’s important to have a sense of the size of effect. Lambda polarization offers, in principal, a unique

way of getting at both the vorticity and the magnetic field which are also central to these measurements.

155



Chapter 8
CONCLUSION

This thesis concerns a Lambda global polarization measurement made by STAR in the BES [1]. This

measurement represents the first non-trivial measurement of this kind. The polarization is proportional to

the gradients of the velocity fields heavy-ion collisions. An entirely new measurement provides an additional

lever arm with which to test and refine models. The polarization has been shown to be directly relatable to

the vorticity in the fluid and the magnetic field caused by the spectators, both of which are fundamental

features of a collision. The results indicate a positive vorticity and hint at the effects of a magnetic field.

These observables are both necessary for various chiral measurements and an understanding of them would

be tremendously important to add context to chiral phenomena.

The results have not been corrected for Lambda detection efficiency which will be important to do for

future results. Currently analyzers across STAR, ALICE, and HADES are working on this and similar

measurements in different systems and for different types of hyperons. RHIC plans on a second beam

energy scan which will take considerably more data at the same values of
√

sNN. At the same time STAR

will implement a number of upgrades to the detector. The reduction of errors in BES-II will be considerable

and allow for further systematic studies of the polarization as it depends on Centrality, rapidity, pT , and φΛ,

all of which are currently not possible due to large statistical errors. Furthermore it may be possible to detect

a magnetic field with the reduced error bars, which would be of tremendous interest. STAR also installed a

gold foil inside the beam pipe (but not covering the path of the ions) at z =211cm. Collisions of the beam

on the fixed target make low energy collisions, beyond the range feasible at a collider. These energies may

also be analyzed. It would certainly be interesting to see if the apparent increasing trend of the polarization

with decreasing
√

sNN continues into very low energies.
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Appendix A
RELATED STUDIES

A.1 Previous STAR result

Part of this document is quoting the 2007 global polarization results from STAR [44]. The first thing to make

clear is that there is a sign error in the 2007 analysis due to a mistake about the angular momentum direction,

so quoted results are going to be off by a sign, though this was fixed in a recent erratum. To compare

we need results integrated over pT in 20-50% centrality. We got these numbers from the 2010 rows of

https://drupal.star.bnl.gov/STAR/files/starpublications/79/data.html. To properly weight

the centrality bins we assume that the number of Λs (Λs) in one bin centrality relative to another is the same

as the ratio is for charged particles (RefMult). We get the refmult from “Centrality def refmult.txt” from

StRefMultCorr averaging the two 5% centrality bins in the table.
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Centrality 62.4GeV 200GeV
20-30% 167 226.5
30-40% 111.5 151.5
40-50% 71 96

Table A.1: StRefMultCorr averaged tables for 62.4GeV and 200GeV

Centrality PH error RefMult·PH (RefMult · error)2

20-30% -0.0001 0.0174 -0.0167 8.44367364
30-40% 0.044 0.02 4.906 4.9729
40-50% -0.0032 0.0253 -0.2272 3.22669369

Table A.2: 62.4GeV Λ results from 2007 paper

A.2 BBC gain correction

This is complicated by tile pairs 7&9 and 13&15. In the discussion most channels will be indexed with an

i while the shared channels are indexed a j and ADC j ≡ 1/2(measured ADC of tile j). For a given “ring”

of tiles all tiles have to have the same average corrected ADC. This is surprisingly tricky, so it’s good to be

careful with the difference between tile (of which there are 18) and ADC channels or PMT (of which there

Centrality PH error RefMult ·PH (RefMult · error)2

20-30% 0.0096 0.024 1.6032 16.064064
30-40% 0.0282 0.027 3.1443 9.06311025
40-50% 0.0174 0.034 1.2354 5.827396

Table A.3: 62.4GeV Λ results from 2007 paper
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Centrality PH error RefMult ·PH (RefMult · error)2

20-30% 0.000177 0.015 0.0400905 11.54300625
30-40% -0.016 0.0178 -2.424 7.27219089
40-50% 0.031 0.0221 2.976 4.50118656

Table A.4: 200GeV Λ results from 2007 paper

Centrality PH error RefMult ·PH (RefMult · error)2

20-30% -0.00795 0.017 -1.800675 14.82635025
30-40% -0.011 0.02 -1.6665 9.1809
40-50% -0.0022 0.025 -0.2112 5.76

Table A.5: 200GeV Λ results from 2007 paper

are 16). Thus Q1,x is (of course Q1,y is the same with a sin instead of a cos)

Q1,x =
1

N(tile)

N(tile)

∑
k(tile)

ADCk(tile)

〈ADCk(tile)〉
cosφk(tile)

=
1

Ni(tile) +N j(tile)

[
∑

i(tile)

ADC(tile)i(tile)

〈ADC(tile)i(tile)〉
cosφi(tile) + ∑

j(tile)

ADC(tile) j(tile)

〈ADC(tile) j(tile)〉
cosφ j(tile)

]

=
1

Ni(tile) +N j(tile)

[
∑

i(PMT)

ADC(PMT)i(PMT)

〈ADC(PMT)i(PMT)〉
cosφi(PMT) +2 ∑

j(PMT)

1
2 ADC(PMT) j(PMT)

〈 1
2 ADC(PMT) j(PMT)〉

cosφ j(PMT)

]

=
1

Ni(PMT) +2N j(PMT)

[
∑

i(PMT)

ADC(PMT)i(PMT)

〈ADC(PMT)i(PMT)〉
cosφi(tile) +2 ∑

j(PMT)

ADC(PMT) j(PMT)

〈ADC(PMT) j(PMT)〉
cosφ j(tile)

]
(A.1)

Type PH error
62.4GeV Λ 0.0133393419 0.0116727212
62.4GeV Λ 0.0171184549 0.015918979
200GeV Λ 0.0012491361 0.0101871395
200GeV Λ -0.0077602848 0.0115104159

Table A.6: 2007 final 20-50% centrality results tabulated from tables A.2-A.5
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A.3 Lambda decay parameter

The decay parameter, α, was first proposed by T.D. Lee and C.N. Yang in 1957 [53] and measured for the Λ

in 1963 by J. Cronin and O. Overseth [54]. There is some confusion early on about what a positive decay

parameter means, see this more modern paper which has a clear explanation [55]. αΛ 6= α
Λ

would imply

a breaking of CP symmetry. There is considerable interest in knowing these parameters well. It has been

assumed in this analysis that no such difference exists which I think is a reasonable null hypothesis.

A.4 Production plane polarization

In a collision of two point-like particles a created Lambda can pick up a polarization perpendicular to the

plane spanned by the Lambda’s momentum and the incoming particles momentum. Such a plane is called

the production plane and is the way αΛ and α
Λ

are measured in [55]. The same effect has been seen in p+p

collisions [56] for Λs, but, curiously, not for Λs. This effect is odd in η and φ. The production plane in

unknowable in a heavy-ion collision and many of the Λs are expected to be created thermally, rather than in

hard scatterings. Furthermore since the effect is odd it is expected to cancel out in our symmetric detector.

There is a small caveat here, which is that if the production plane is statistically aligned with the impact

parameter and the event has finite v1 it would be possible for this to have some effect on global polarization,

since the v1 itself is odd in η and φ. We expect this to be negligible, particularly as our detector does not

extend greatly in η.

A.5 Event plane decorrelation

As mentioned in sec. 3.2 the resolution we calculation did not take into account decorrelation with rapidity.

At forward rapidities event planes begin to decorrelate from mid-rapidity event planes. We have no estimate

for this for the first order event plane and have thus made no provision for it. It is not obvious what effect

this has on the resolution since the subevents are very separated and even in rapidity. One would expect the

decorrelation between the midrapidity particles and the forward event plane to be half that of one subevent

to another.
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Figure A.1: Polarization perpendicular from the production plane in p+p collisions is shown as a schematic.
Λs are depicted as blue tops. The large blue arrows demonstrate the qualitative polarization direction de-
pending on which quadrant of the η−φ space the Λ is emitted in.
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